{"title":"螺旋弹性谷超材料的拓扑跃迁","authors":"Shuaifeng Li, Jinkyu Yang","doi":"10.1103/PHYSREVAPPLIED.15.014058","DOIUrl":null,"url":null,"abstract":"Elastic valley metamaterials offer an excellent platform to manipulate elastic waves and have potential applications in energy harvesting and elastography. Here we introduce a series of strategies to realize topological transition in spiral elastic valley metamaterials by parameter modulations. We show the evolution of Berry curvature and valley Chern number as a function of inherent parameters of spiral, which further results in a general scheme to achieve topological valley edge states. Our strategy leverages multiple degrees of freedom in spiral elastic valley metamaterials to provide enhanced opportunities for desired topological states.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Topological Transition in Spiral Elastic Valley Metamaterials\",\"authors\":\"Shuaifeng Li, Jinkyu Yang\",\"doi\":\"10.1103/PHYSREVAPPLIED.15.014058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Elastic valley metamaterials offer an excellent platform to manipulate elastic waves and have potential applications in energy harvesting and elastography. Here we introduce a series of strategies to realize topological transition in spiral elastic valley metamaterials by parameter modulations. We show the evolution of Berry curvature and valley Chern number as a function of inherent parameters of spiral, which further results in a general scheme to achieve topological valley edge states. Our strategy leverages multiple degrees of freedom in spiral elastic valley metamaterials to provide enhanced opportunities for desired topological states.\",\"PeriodicalId\":8423,\"journal\":{\"name\":\"arXiv: Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVAPPLIED.15.014058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVAPPLIED.15.014058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Topological Transition in Spiral Elastic Valley Metamaterials
Elastic valley metamaterials offer an excellent platform to manipulate elastic waves and have potential applications in energy harvesting and elastography. Here we introduce a series of strategies to realize topological transition in spiral elastic valley metamaterials by parameter modulations. We show the evolution of Berry curvature and valley Chern number as a function of inherent parameters of spiral, which further results in a general scheme to achieve topological valley edge states. Our strategy leverages multiple degrees of freedom in spiral elastic valley metamaterials to provide enhanced opportunities for desired topological states.