超对称自适应联合子空间检测

IF 1.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Liyan Pan, Yongchan Gao, Z. Ye, Yuzhou Lv, Ming Fang
{"title":"超对称自适应联合子空间检测","authors":"Liyan Pan, Yongchan Gao, Z. Ye, Yuzhou Lv, Ming Fang","doi":"10.3389/frsip.2021.782182","DOIUrl":null,"url":null,"abstract":"This paper addresses the detection of a signal belonging to several possible subspace models, namely, a union of subspaces (UoS), where the active subspace that generated the observed signal is unknown. By incorporating the persymmetric structure of received data, we propose three UoS detectors based on GLRT, Rao, and Wald criteria to alleviate the requirement of training data. In addition, the detection statistic and classification bound for the proposed detectors are derived. Monte-Carlo simulations demonstrate the detection and classification performance of the proposed detectors over the conventional detector in training-limited scenarios.","PeriodicalId":93557,"journal":{"name":"Frontiers in signal processing","volume":"75 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Persymmetric Adaptive Union Subspace Detection\",\"authors\":\"Liyan Pan, Yongchan Gao, Z. Ye, Yuzhou Lv, Ming Fang\",\"doi\":\"10.3389/frsip.2021.782182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the detection of a signal belonging to several possible subspace models, namely, a union of subspaces (UoS), where the active subspace that generated the observed signal is unknown. By incorporating the persymmetric structure of received data, we propose three UoS detectors based on GLRT, Rao, and Wald criteria to alleviate the requirement of training data. In addition, the detection statistic and classification bound for the proposed detectors are derived. Monte-Carlo simulations demonstrate the detection and classification performance of the proposed detectors over the conventional detector in training-limited scenarios.\",\"PeriodicalId\":93557,\"journal\":{\"name\":\"Frontiers in signal processing\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in signal processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frsip.2021.782182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in signal processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frsip.2021.782182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了属于几个可能的子空间模型的信号的检测,即子空间的并集(UoS),其中产生观测信号的活动子空间是未知的。通过结合接收数据的超对称结构,我们提出了基于GLRT、Rao和Wald准则的三种UoS检测器,以减轻对训练数据的需求。此外,还推导了该检测器的检测统计量和分类界。蒙特卡罗仿真表明,在训练受限的情况下,该检测器的检测和分类性能优于传统检测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Persymmetric Adaptive Union Subspace Detection
This paper addresses the detection of a signal belonging to several possible subspace models, namely, a union of subspaces (UoS), where the active subspace that generated the observed signal is unknown. By incorporating the persymmetric structure of received data, we propose three UoS detectors based on GLRT, Rao, and Wald criteria to alleviate the requirement of training data. In addition, the detection statistic and classification bound for the proposed detectors are derived. Monte-Carlo simulations demonstrate the detection and classification performance of the proposed detectors over the conventional detector in training-limited scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信