图的结构化代码

N. Alon, Anna Gujgiczer, J. Körner, Aleksa Milojević, G. Simonyi
{"title":"图的结构化代码","authors":"N. Alon, Anna Gujgiczer, J. Körner, Aleksa Milojević, G. Simonyi","doi":"10.1137/22m1487989","DOIUrl":null,"url":null,"abstract":"We investigate the maximum size of graph families on a common vertex set of cardinality $n$ such that the symmetric difference of the edge sets of any two members of the family satisfies some prescribed condition. We solve the problem completely for infinitely many values of $n$ when the prescribed condition is connectivity or $2$-connectivity, Hamiltonicity or the containment of a spanning star. We also investigate local conditions that can be certified by looking at only a subset of the vertex set. In these cases a capacity-type asymptotic invariant is defined and when the condition is to contain a certain subgraph this invariant is shown to be a simple function of the chromatic number of this required subgraph. This is proven using classical results from extremal graph theory. Several variants are considered and the paper ends with a collection of open problems.","PeriodicalId":21749,"journal":{"name":"SIAM J. Discret. Math.","volume":"91 1","pages":"379-403"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Structured Codes of Graphs\",\"authors\":\"N. Alon, Anna Gujgiczer, J. Körner, Aleksa Milojević, G. Simonyi\",\"doi\":\"10.1137/22m1487989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the maximum size of graph families on a common vertex set of cardinality $n$ such that the symmetric difference of the edge sets of any two members of the family satisfies some prescribed condition. We solve the problem completely for infinitely many values of $n$ when the prescribed condition is connectivity or $2$-connectivity, Hamiltonicity or the containment of a spanning star. We also investigate local conditions that can be certified by looking at only a subset of the vertex set. In these cases a capacity-type asymptotic invariant is defined and when the condition is to contain a certain subgraph this invariant is shown to be a simple function of the chromatic number of this required subgraph. This is proven using classical results from extremal graph theory. Several variants are considered and the paper ends with a collection of open problems.\",\"PeriodicalId\":21749,\"journal\":{\"name\":\"SIAM J. Discret. Math.\",\"volume\":\"91 1\",\"pages\":\"379-403\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Discret. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1487989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Discret. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1487989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们研究了在基数为$n$的公共顶点集上图族的最大大小,使得图族中任意两个成员的边集的对称差满足某些规定的条件。当给定条件为连通性或2 -连通性、哈密顿性或生成星的包容性时,我们完全解决了n的无穷多个值的问题。我们还研究了局部条件,这些局部条件可以仅通过查看顶点集的一个子集来证明。在这种情况下,定义了一个容量型渐近不变量,当条件是包含一个特定的子图时,这个不变量被证明是这个所需子图的色数的简单函数。这是用极值图论的经典结果证明的。本文考虑了几种变体,并以一系列开放问题作为结束语。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structured Codes of Graphs
We investigate the maximum size of graph families on a common vertex set of cardinality $n$ such that the symmetric difference of the edge sets of any two members of the family satisfies some prescribed condition. We solve the problem completely for infinitely many values of $n$ when the prescribed condition is connectivity or $2$-connectivity, Hamiltonicity or the containment of a spanning star. We also investigate local conditions that can be certified by looking at only a subset of the vertex set. In these cases a capacity-type asymptotic invariant is defined and when the condition is to contain a certain subgraph this invariant is shown to be a simple function of the chromatic number of this required subgraph. This is proven using classical results from extremal graph theory. Several variants are considered and the paper ends with a collection of open problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信