DWKS:网格和点云之间变形的局部描述符

Robin Magnet, M. Ovsjanikov
{"title":"DWKS:网格和点云之间变形的局部描述符","authors":"Robin Magnet, M. Ovsjanikov","doi":"10.1109/ICCV48922.2021.00377","DOIUrl":null,"url":null,"abstract":"We propose a novel pointwise descriptor, called DWKS, aimed at finding correspondences across two deformable shape collections. Unlike the majority of existing descriptors, rather than capturing local geometry, DWKS captures the deformation around a point within a collection in a multi-scale and informative manner. This, in turn, allows to compute inter-collection correspondences without using landmarks. To this end, we build upon the successful spectral WKS descriptors, but rather than using the Laplace-Beltrami operator, show that a similar construction can be performed on shape difference operators, that capture differences or distortion within a collection. By leveraging the collection information our descriptor facilitates difficult non-rigid shape matching tasks, even in the presence of strong partiality and significant deformations. We demonstrate the utility of our approach across a range of challenging matching problems on both meshes and point clouds. The code for this paper can be found at https://github.com/RobinMagnet/DWKS","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"104 1","pages":"3773-3782"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DWKS : A Local Descriptor of Deformations Between Meshes and Point Clouds\",\"authors\":\"Robin Magnet, M. Ovsjanikov\",\"doi\":\"10.1109/ICCV48922.2021.00377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel pointwise descriptor, called DWKS, aimed at finding correspondences across two deformable shape collections. Unlike the majority of existing descriptors, rather than capturing local geometry, DWKS captures the deformation around a point within a collection in a multi-scale and informative manner. This, in turn, allows to compute inter-collection correspondences without using landmarks. To this end, we build upon the successful spectral WKS descriptors, but rather than using the Laplace-Beltrami operator, show that a similar construction can be performed on shape difference operators, that capture differences or distortion within a collection. By leveraging the collection information our descriptor facilitates difficult non-rigid shape matching tasks, even in the presence of strong partiality and significant deformations. We demonstrate the utility of our approach across a range of challenging matching problems on both meshes and point clouds. The code for this paper can be found at https://github.com/RobinMagnet/DWKS\",\"PeriodicalId\":6820,\"journal\":{\"name\":\"2021 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"104 1\",\"pages\":\"3773-3782\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV48922.2021.00377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.00377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种新的点向描述符,称为DWKS,旨在找到两个可变形形状集合之间的对应关系。与大多数现有的描述符不同,DWKS不是捕获局部几何形状,而是以多尺度和信息的方式捕获集合中点周围的变形。反过来,这允许在不使用地标的情况下计算集合间的对应关系。为此,我们建立在成功的光谱WKS描述符的基础上,但不是使用拉普拉斯-贝尔特拉米算子,而是表明可以在形状差异算子上执行类似的构造,以捕获集合中的差异或扭曲。通过利用集合信息,我们的描述符简化了困难的非刚性形状匹配任务,即使在存在强烈的偏袒和显著变形的情况下也是如此。我们在网格和点云上展示了我们的方法在一系列具有挑战性的匹配问题上的实用性。本文的代码可以在https://github.com/RobinMagnet/DWKS上找到
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DWKS : A Local Descriptor of Deformations Between Meshes and Point Clouds
We propose a novel pointwise descriptor, called DWKS, aimed at finding correspondences across two deformable shape collections. Unlike the majority of existing descriptors, rather than capturing local geometry, DWKS captures the deformation around a point within a collection in a multi-scale and informative manner. This, in turn, allows to compute inter-collection correspondences without using landmarks. To this end, we build upon the successful spectral WKS descriptors, but rather than using the Laplace-Beltrami operator, show that a similar construction can be performed on shape difference operators, that capture differences or distortion within a collection. By leveraging the collection information our descriptor facilitates difficult non-rigid shape matching tasks, even in the presence of strong partiality and significant deformations. We demonstrate the utility of our approach across a range of challenging matching problems on both meshes and point clouds. The code for this paper can be found at https://github.com/RobinMagnet/DWKS
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信