{"title":"声化学合成具有混凝土增强潜力的mwcnt -马来酸酐-壬烯-1添加剂材料","authors":"Elvin Y. Malikov","doi":"10.1080/14328917.2022.2148077","DOIUrl":null,"url":null,"abstract":"ABSTRACT The additive for concrete strengthening purposes based on the multiwalled carbon nanotubes was sonochemically synthesised under mild conditions through a radical polymerisation route by the reaction of oxidised nanotubes with maleic anhydride and α-nonene monomers. The Catalytic Chemical Vapour Deposition over the Fe-Co/Al2O3 catalyst was the method for the synthesis of the nanotubes used as the main reinforcement part. The resulting nanocomposite was characterised using Transmission electron microscopy, Scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and Raman spectroscopy techniques. The results from the above-mentioned methods revealed the success of the synthesis process. The mechanical testing showed that the obtained nanostructure is suitable additive material for concrete strengthening purposes with about 52.2% strengthening potential.","PeriodicalId":18235,"journal":{"name":"Materials Research Innovations","volume":"31 1","pages":"304 - 309"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sonochemically synthesized MWCNT-maleic anhydride-nonene-1 additive material with concrete strengthening potential\",\"authors\":\"Elvin Y. Malikov\",\"doi\":\"10.1080/14328917.2022.2148077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The additive for concrete strengthening purposes based on the multiwalled carbon nanotubes was sonochemically synthesised under mild conditions through a radical polymerisation route by the reaction of oxidised nanotubes with maleic anhydride and α-nonene monomers. The Catalytic Chemical Vapour Deposition over the Fe-Co/Al2O3 catalyst was the method for the synthesis of the nanotubes used as the main reinforcement part. The resulting nanocomposite was characterised using Transmission electron microscopy, Scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and Raman spectroscopy techniques. The results from the above-mentioned methods revealed the success of the synthesis process. The mechanical testing showed that the obtained nanostructure is suitable additive material for concrete strengthening purposes with about 52.2% strengthening potential.\",\"PeriodicalId\":18235,\"journal\":{\"name\":\"Materials Research Innovations\",\"volume\":\"31 1\",\"pages\":\"304 - 309\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Innovations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/14328917.2022.2148077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Innovations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14328917.2022.2148077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Sonochemically synthesized MWCNT-maleic anhydride-nonene-1 additive material with concrete strengthening potential
ABSTRACT The additive for concrete strengthening purposes based on the multiwalled carbon nanotubes was sonochemically synthesised under mild conditions through a radical polymerisation route by the reaction of oxidised nanotubes with maleic anhydride and α-nonene monomers. The Catalytic Chemical Vapour Deposition over the Fe-Co/Al2O3 catalyst was the method for the synthesis of the nanotubes used as the main reinforcement part. The resulting nanocomposite was characterised using Transmission electron microscopy, Scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and Raman spectroscopy techniques. The results from the above-mentioned methods revealed the success of the synthesis process. The mechanical testing showed that the obtained nanostructure is suitable additive material for concrete strengthening purposes with about 52.2% strengthening potential.
期刊介绍:
Materials Research Innovations covers all areas of materials research with a particular interest in synthesis, processing, and properties from the nanoscale to the microscale to the bulk. Coverage includes all classes of material – ceramics, metals, and polymers; semiconductors and other functional materials; organic and inorganic materials – alone or in combination as composites. Innovation in composition and processing to impart special properties to bulk materials and coatings, and for innovative applications in technology, represents a strong focus. The journal attempts to balance enduring themes of science and engineering with the innovation provided by such areas of research activity.