{"title":"与多项分布有关的某一类统计量的大偏差的概率","authors":"S. Mirakhmedov","doi":"10.1051/ps/2020020","DOIUrl":null,"url":null,"abstract":"Let η = (η1, …, ηN) be a multinomial random vector with parameters n = η1 + ⋯ + ηN and pm > 0, m = 1, …, N, p1 + ⋯ + pN = 1. We assume that N →∞ and maxpm → 0 as n →∞. The probabilities of large deviations for statistics of the form h1(η1) + ⋯ + hN(ηN) are studied, where hm(x) is a real-valued function of a non-negative integer-valued argument. The new large deviation results for the power-divergence statistics and its most popular special variants, as well as for several count statistics are derived as consequences of the general theorems.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The probabilities of large deviations for a certain class of statistics associated with multinomial distribution\",\"authors\":\"S. Mirakhmedov\",\"doi\":\"10.1051/ps/2020020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let η = (η1, …, ηN) be a multinomial random vector with parameters n = η1 + ⋯ + ηN and pm > 0, m = 1, …, N, p1 + ⋯ + pN = 1. We assume that N →∞ and maxpm → 0 as n →∞. The probabilities of large deviations for statistics of the form h1(η1) + ⋯ + hN(ηN) are studied, where hm(x) is a real-valued function of a non-negative integer-valued argument. The new large deviation results for the power-divergence statistics and its most popular special variants, as well as for several count statistics are derived as consequences of the general theorems.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/ps/2020020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/ps/2020020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The probabilities of large deviations for a certain class of statistics associated with multinomial distribution
Let η = (η1, …, ηN) be a multinomial random vector with parameters n = η1 + ⋯ + ηN and pm > 0, m = 1, …, N, p1 + ⋯ + pN = 1. We assume that N →∞ and maxpm → 0 as n →∞. The probabilities of large deviations for statistics of the form h1(η1) + ⋯ + hN(ηN) are studied, where hm(x) is a real-valued function of a non-negative integer-valued argument. The new large deviation results for the power-divergence statistics and its most popular special variants, as well as for several count statistics are derived as consequences of the general theorems.