一种用于人员再识别的增量动态时间翘曲

Wisrut Kwankhoom, P. Muneesawang
{"title":"一种用于人员再识别的增量动态时间翘曲","authors":"Wisrut Kwankhoom, P. Muneesawang","doi":"10.1109/JCSSE.2017.8025916","DOIUrl":null,"url":null,"abstract":"This paper presents principles and techniques of a human gesture recognition algorithm for person identification which identifies personal gait patterns recorded with a 3D depth sensing camera, in this case the Microsoft Kinect® version 2. The recorded images are analyzed against a dataset of gait gestures derived from a sample of 37 people. We compared two algorithms for analyzing movement trajectories; Sparse code and Incremental Dynamic Time Warping (IDTW). Experimental results show that the methods have an encouraging performance. When comparing the accuracy of algorithms, IDTW gave better recognition results than the Sparse code method.","PeriodicalId":6460,"journal":{"name":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"57 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Incremental Dynamic Time Warping for person re-identification\",\"authors\":\"Wisrut Kwankhoom, P. Muneesawang\",\"doi\":\"10.1109/JCSSE.2017.8025916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents principles and techniques of a human gesture recognition algorithm for person identification which identifies personal gait patterns recorded with a 3D depth sensing camera, in this case the Microsoft Kinect® version 2. The recorded images are analyzed against a dataset of gait gestures derived from a sample of 37 people. We compared two algorithms for analyzing movement trajectories; Sparse code and Incremental Dynamic Time Warping (IDTW). Experimental results show that the methods have an encouraging performance. When comparing the accuracy of algorithms, IDTW gave better recognition results than the Sparse code method.\",\"PeriodicalId\":6460,\"journal\":{\"name\":\"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"volume\":\"57 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCSSE.2017.8025916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2017.8025916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了用于人识别的人类手势识别算法的原理和技术,该算法识别由3D深度感测相机记录的个人步态模式,在本例中为微软Kinect®版本2。这些记录下来的图像将与来自37人样本的步态手势数据集进行分析。我们比较了两种分析运动轨迹的算法;稀疏代码和增量动态时间翘曲(IDTW)。实验结果表明,该方法具有良好的性能。在比较两种算法的准确率时,IDTW方法的识别效果优于稀疏编码方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Incremental Dynamic Time Warping for person re-identification
This paper presents principles and techniques of a human gesture recognition algorithm for person identification which identifies personal gait patterns recorded with a 3D depth sensing camera, in this case the Microsoft Kinect® version 2. The recorded images are analyzed against a dataset of gait gestures derived from a sample of 37 people. We compared two algorithms for analyzing movement trajectories; Sparse code and Incremental Dynamic Time Warping (IDTW). Experimental results show that the methods have an encouraging performance. When comparing the accuracy of algorithms, IDTW gave better recognition results than the Sparse code method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信