{"title":"基于遗传算法的无人机三维运动规划","authors":"Maverick Rivera, J. R. D. del Rosario, A. Bandala","doi":"10.1109/HNICEM48295.2019.9072878","DOIUrl":null,"url":null,"abstract":"Development of Unmanned Aerial Vehicle (UAV) is now a popular field in research. In most of its applications, a pathfinding algorithm is needed in order to find the optimal path and avoid obstacles. In this paper, a genetic algorithm is implemented in order to determine the optimal path for a UAV that will avoid obstacles along the way. The genetic algorithm implemented uses variable-length chromosomes to solve the problem. The results of the simulation of the system yield an average of 29 generations and avoided 53, 500 collisions to find the best path.","PeriodicalId":6733,"journal":{"name":"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )","volume":"11 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Genetic Algorithm Based 3D Motion Planning for Unmanned Aerial Vehicle\",\"authors\":\"Maverick Rivera, J. R. D. del Rosario, A. Bandala\",\"doi\":\"10.1109/HNICEM48295.2019.9072878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Development of Unmanned Aerial Vehicle (UAV) is now a popular field in research. In most of its applications, a pathfinding algorithm is needed in order to find the optimal path and avoid obstacles. In this paper, a genetic algorithm is implemented in order to determine the optimal path for a UAV that will avoid obstacles along the way. The genetic algorithm implemented uses variable-length chromosomes to solve the problem. The results of the simulation of the system yield an average of 29 generations and avoided 53, 500 collisions to find the best path.\",\"PeriodicalId\":6733,\"journal\":{\"name\":\"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )\",\"volume\":\"11 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HNICEM48295.2019.9072878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM48295.2019.9072878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Genetic Algorithm Based 3D Motion Planning for Unmanned Aerial Vehicle
Development of Unmanned Aerial Vehicle (UAV) is now a popular field in research. In most of its applications, a pathfinding algorithm is needed in order to find the optimal path and avoid obstacles. In this paper, a genetic algorithm is implemented in order to determine the optimal path for a UAV that will avoid obstacles along the way. The genetic algorithm implemented uses variable-length chromosomes to solve the problem. The results of the simulation of the system yield an average of 29 generations and avoided 53, 500 collisions to find the best path.