M. K. Amjad, S. I. Butt, N. Anjum, I. Chaudhry, Z. Faping, M. Khan
{"title":"柔性作业车间调度优化问题的迭代多样化分层遗传算法","authors":"M. K. Amjad, S. I. Butt, N. Anjum, I. Chaudhry, Z. Faping, M. Khan","doi":"10.14743/apem2020.4.372","DOIUrl":null,"url":null,"abstract":"Flexible job shop scheduling problem (FJSSP) is a further expansion of the classical job shop scheduling problem (JSSP). FJSSP is known to be NP-hard with regards to optimization and hence poses a challenge in finding acceptable solutions. Genetic algorithm (GA) has successfully been applied in this regard since last two decades. This paper provides an insight into the actual complexity of selected benchmark problems through quantitative evaluation of the search space owing to their NP-hard nature. A four-layered genetic algorithm is then proposed and implemented with adaptive parameters of population initialization and operator probabilities to manage intensification and diversification intelligently. The concept of reinitialization is introduced whenever the algorithm is trapped in local minima till predefined number of generations. Results are then compared with various other standalone evolutionary algorithms for selected benchmark problems. It is found that the proposed GA finds better solutions with this technique as compared to solutions produced without this technique. Moreover, the technique helps to overcome the local minima trap. Further comparison and analysis indicate that the proposed algorithm produces comparative and improved solutions with respect to other analogous methodologies owing to the diversification technique.","PeriodicalId":48763,"journal":{"name":"Advances in Production Engineering & Management","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A layered genetic algorithm with iterative diversification for optimization of flexible job shop scheduling problems\",\"authors\":\"M. K. Amjad, S. I. Butt, N. Anjum, I. Chaudhry, Z. Faping, M. Khan\",\"doi\":\"10.14743/apem2020.4.372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flexible job shop scheduling problem (FJSSP) is a further expansion of the classical job shop scheduling problem (JSSP). FJSSP is known to be NP-hard with regards to optimization and hence poses a challenge in finding acceptable solutions. Genetic algorithm (GA) has successfully been applied in this regard since last two decades. This paper provides an insight into the actual complexity of selected benchmark problems through quantitative evaluation of the search space owing to their NP-hard nature. A four-layered genetic algorithm is then proposed and implemented with adaptive parameters of population initialization and operator probabilities to manage intensification and diversification intelligently. The concept of reinitialization is introduced whenever the algorithm is trapped in local minima till predefined number of generations. Results are then compared with various other standalone evolutionary algorithms for selected benchmark problems. It is found that the proposed GA finds better solutions with this technique as compared to solutions produced without this technique. Moreover, the technique helps to overcome the local minima trap. Further comparison and analysis indicate that the proposed algorithm produces comparative and improved solutions with respect to other analogous methodologies owing to the diversification technique.\",\"PeriodicalId\":48763,\"journal\":{\"name\":\"Advances in Production Engineering & Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2020-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Production Engineering & Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.14743/apem2020.4.372\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Production Engineering & Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.14743/apem2020.4.372","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
A layered genetic algorithm with iterative diversification for optimization of flexible job shop scheduling problems
Flexible job shop scheduling problem (FJSSP) is a further expansion of the classical job shop scheduling problem (JSSP). FJSSP is known to be NP-hard with regards to optimization and hence poses a challenge in finding acceptable solutions. Genetic algorithm (GA) has successfully been applied in this regard since last two decades. This paper provides an insight into the actual complexity of selected benchmark problems through quantitative evaluation of the search space owing to their NP-hard nature. A four-layered genetic algorithm is then proposed and implemented with adaptive parameters of population initialization and operator probabilities to manage intensification and diversification intelligently. The concept of reinitialization is introduced whenever the algorithm is trapped in local minima till predefined number of generations. Results are then compared with various other standalone evolutionary algorithms for selected benchmark problems. It is found that the proposed GA finds better solutions with this technique as compared to solutions produced without this technique. Moreover, the technique helps to overcome the local minima trap. Further comparison and analysis indicate that the proposed algorithm produces comparative and improved solutions with respect to other analogous methodologies owing to the diversification technique.
期刊介绍:
Advances in Production Engineering & Management (APEM journal) is an interdisciplinary international academic journal published quarterly. The main goal of the APEM journal is to present original, high quality, theoretical and application-oriented research developments in all areas of production engineering and production management to a broad audience of academics and practitioners. In order to bridge the gap between theory and practice, applications based on advanced theory and case studies are particularly welcome. For theoretical papers, their originality and research contributions are the main factors in the evaluation process. General approaches, formalisms, algorithms or techniques should be illustrated with significant applications that demonstrate their applicability to real-world problems. Please note the APEM journal is not intended especially for studying problems in the finance, economics, business, and bank sectors even though the methodology in the paper is quality/project management oriented. Therefore, the papers should include a substantial level of engineering issues in the field of manufacturing engineering.