可再生能源利用受限的微电网优化能源管理

H. T. Nguyen, L. Le
{"title":"可再生能源利用受限的微电网优化能源管理","authors":"H. T. Nguyen, L. Le","doi":"10.1109/SmartGridComm.2014.7007635","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the energy management for a building microgrid considering a probabilistic constraint on the renewable energy utilization. Facilitated by the microgrid technology with integrated renewable energy resources, we assume that the building microgrid can participate in the electricity market to efficiently utilize the renewable energy and reduce electricity cost. In this paper, we develop an optimal energy management framework for the building microgrid considering various building loads, renewable energy, storage facility, and a natural gas combined heat and power (CHP) system. In addition, we employ the chance constrained and two-stage stochastic programming approach in our design to ensure efficient utilization of the renewable energy and to capture various system uncertainties. The proposed solution addresses the risk that available renewable energy may not be fully utilized due to its intermittent nature. Extensive numerical results are presented to illustrate the effectiveness of our proposed design.","PeriodicalId":6499,"journal":{"name":"2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)","volume":"7 1","pages":"133-138"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Optimal energy management for building microgrid with constrained renewable energy utilization\",\"authors\":\"H. T. Nguyen, L. Le\",\"doi\":\"10.1109/SmartGridComm.2014.7007635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the energy management for a building microgrid considering a probabilistic constraint on the renewable energy utilization. Facilitated by the microgrid technology with integrated renewable energy resources, we assume that the building microgrid can participate in the electricity market to efficiently utilize the renewable energy and reduce electricity cost. In this paper, we develop an optimal energy management framework for the building microgrid considering various building loads, renewable energy, storage facility, and a natural gas combined heat and power (CHP) system. In addition, we employ the chance constrained and two-stage stochastic programming approach in our design to ensure efficient utilization of the renewable energy and to capture various system uncertainties. The proposed solution addresses the risk that available renewable energy may not be fully utilized due to its intermittent nature. Extensive numerical results are presented to illustrate the effectiveness of our proposed design.\",\"PeriodicalId\":6499,\"journal\":{\"name\":\"2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)\",\"volume\":\"7 1\",\"pages\":\"133-138\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2014.7007635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2014.7007635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文研究了考虑可再生能源利用概率约束的建筑微电网能源管理问题。在集成可再生能源的微电网技术的推动下,我们假设建筑微电网可以参与电力市场,有效利用可再生能源,降低电力成本。在本文中,我们为考虑各种建筑负荷、可再生能源、存储设施和天然气热电联产(CHP)系统的建筑微电网开发了一个最佳能源管理框架。此外,我们在设计中采用了机会约束和两阶段随机规划方法,以确保可再生能源的有效利用,并捕捉各种系统的不确定性。拟议的解决方案解决了现有可再生能源由于其间歇性而可能无法充分利用的风险。大量的数值结果说明了我们所提出的设计的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal energy management for building microgrid with constrained renewable energy utilization
In this paper, we consider the energy management for a building microgrid considering a probabilistic constraint on the renewable energy utilization. Facilitated by the microgrid technology with integrated renewable energy resources, we assume that the building microgrid can participate in the electricity market to efficiently utilize the renewable energy and reduce electricity cost. In this paper, we develop an optimal energy management framework for the building microgrid considering various building loads, renewable energy, storage facility, and a natural gas combined heat and power (CHP) system. In addition, we employ the chance constrained and two-stage stochastic programming approach in our design to ensure efficient utilization of the renewable energy and to capture various system uncertainties. The proposed solution addresses the risk that available renewable energy may not be fully utilized due to its intermittent nature. Extensive numerical results are presented to illustrate the effectiveness of our proposed design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信