具有变化点的市场的风险约束和不完全信息下的效用最大化

Q3 Mathematics
O. Janke
{"title":"具有变化点的市场的风险约束和不完全信息下的效用最大化","authors":"O. Janke","doi":"10.1080/1350486X.2017.1409080","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this article, we consider an optimization problem of expected utility maximization of continuous-time trading in a financial market. This trading is constrained by a benchmark for a utility-based shortfall risk measure. The market consists of one asset whose price process is modelled by a Geometric Brownian motion where the market parameters change at a random time. The information flow is modelled by initially and progressively enlarged filtrations which represent the knowledge about the price process, the Brownian motion and the random time. We solve the maximization problem and give the optimal terminal wealth depending on these different filtrations for general utility functions by using martingale representation results for the corresponding filtration.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"58 1","pages":"451 - 484"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utility maximization under risk constraints and incomplete information for a market with a change point\",\"authors\":\"O. Janke\",\"doi\":\"10.1080/1350486X.2017.1409080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this article, we consider an optimization problem of expected utility maximization of continuous-time trading in a financial market. This trading is constrained by a benchmark for a utility-based shortfall risk measure. The market consists of one asset whose price process is modelled by a Geometric Brownian motion where the market parameters change at a random time. The information flow is modelled by initially and progressively enlarged filtrations which represent the knowledge about the price process, the Brownian motion and the random time. We solve the maximization problem and give the optimal terminal wealth depending on these different filtrations for general utility functions by using martingale representation results for the corresponding filtration.\",\"PeriodicalId\":35818,\"journal\":{\"name\":\"Applied Mathematical Finance\",\"volume\":\"58 1\",\"pages\":\"451 - 484\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1350486X.2017.1409080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2017.1409080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究金融市场上连续时间交易的期望效用最大化优化问题。这种交易受到基于公用事业的短缺风险衡量基准的限制。市场由一种资产组成,其价格过程由几何布朗运动建模,其中市场参数在随机时间变化。信息流是通过最初和逐步扩大的过滤来建模的,这些过滤代表了关于价格过程、布朗运动和随机时间的知识。通过对相应的过滤使用鞅表示结果,我们解决了最大化问题,并根据一般效用函数的这些不同过滤给出了最优终端财富。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utility maximization under risk constraints and incomplete information for a market with a change point
ABSTRACT In this article, we consider an optimization problem of expected utility maximization of continuous-time trading in a financial market. This trading is constrained by a benchmark for a utility-based shortfall risk measure. The market consists of one asset whose price process is modelled by a Geometric Brownian motion where the market parameters change at a random time. The information flow is modelled by initially and progressively enlarged filtrations which represent the knowledge about the price process, the Brownian motion and the random time. We solve the maximization problem and give the optimal terminal wealth depending on these different filtrations for general utility functions by using martingale representation results for the corresponding filtration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信