{"title":"具有变化点的市场的风险约束和不完全信息下的效用最大化","authors":"O. Janke","doi":"10.1080/1350486X.2017.1409080","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this article, we consider an optimization problem of expected utility maximization of continuous-time trading in a financial market. This trading is constrained by a benchmark for a utility-based shortfall risk measure. The market consists of one asset whose price process is modelled by a Geometric Brownian motion where the market parameters change at a random time. The information flow is modelled by initially and progressively enlarged filtrations which represent the knowledge about the price process, the Brownian motion and the random time. We solve the maximization problem and give the optimal terminal wealth depending on these different filtrations for general utility functions by using martingale representation results for the corresponding filtration.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"58 1","pages":"451 - 484"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utility maximization under risk constraints and incomplete information for a market with a change point\",\"authors\":\"O. Janke\",\"doi\":\"10.1080/1350486X.2017.1409080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this article, we consider an optimization problem of expected utility maximization of continuous-time trading in a financial market. This trading is constrained by a benchmark for a utility-based shortfall risk measure. The market consists of one asset whose price process is modelled by a Geometric Brownian motion where the market parameters change at a random time. The information flow is modelled by initially and progressively enlarged filtrations which represent the knowledge about the price process, the Brownian motion and the random time. We solve the maximization problem and give the optimal terminal wealth depending on these different filtrations for general utility functions by using martingale representation results for the corresponding filtration.\",\"PeriodicalId\":35818,\"journal\":{\"name\":\"Applied Mathematical Finance\",\"volume\":\"58 1\",\"pages\":\"451 - 484\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1350486X.2017.1409080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2017.1409080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Utility maximization under risk constraints and incomplete information for a market with a change point
ABSTRACT In this article, we consider an optimization problem of expected utility maximization of continuous-time trading in a financial market. This trading is constrained by a benchmark for a utility-based shortfall risk measure. The market consists of one asset whose price process is modelled by a Geometric Brownian motion where the market parameters change at a random time. The information flow is modelled by initially and progressively enlarged filtrations which represent the knowledge about the price process, the Brownian motion and the random time. We solve the maximization problem and give the optimal terminal wealth depending on these different filtrations for general utility functions by using martingale representation results for the corresponding filtration.
期刊介绍:
The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.