一种新型共聚物增强水生系统中铵的去除

Waseem A. Gad, Hazem F. Taha, Ibrahim El-Hussein
{"title":"一种新型共聚物增强水生系统中铵的去除","authors":"Waseem A. Gad, Hazem F. Taha, Ibrahim El-Hussein","doi":"10.2166/aqua.2022.075","DOIUrl":null,"url":null,"abstract":"\n A novel copolymer was used as an adsorbent for enhanced ammonium removal in an aqueous system; different ratios of styrene–acrylic acid copolymers were synthesized by random free radical polymerization and followed by a sulfonation of styrene (acrylic acid 25%–sulfonated styrene 75%) copolymer [P(AA25/SS75)] attained the highest ammonium adsorption capacity (55.8 mg/g) due to the electrostatic attraction between positively charged NH4+ and negatively charged –COO− and –SO3- groups. FTIR spectra for sulfonated polymers illustrated the appearance of characteristic peaks at 100–1,200 cm−1 indicating that the copolymers were successfully sulfonated. The influence of different experimental factors (i.e., contact time, pH, NH4+ concentration, adsorbent dose) on ammonium ion adsorption was investigated; three adsorption isotherm models including Langmuir, Freundlich, and Temkin were used to study the adsorption mechanism. The results indicated that the equilibrium of adsorption can be reached within 30 min; the highest adsorption capacity can be achieved around pH 7. Furthermore, Freundlich isotherm was the most suitable for fitting the experimental data which might expose the heterogeneity of the adsorbent surface. The regeneration and reusability studies were also implemented, and results showed that P(AA25/PSS75) was stable and regenerable using (1 M) sulfuric acid as a desorbing agent over five cycles.","PeriodicalId":17666,"journal":{"name":"Journal of Water Supply: Research and Technology-Aqua","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced ammonium removal from aquatic systems by a novel copolymer\",\"authors\":\"Waseem A. Gad, Hazem F. Taha, Ibrahim El-Hussein\",\"doi\":\"10.2166/aqua.2022.075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A novel copolymer was used as an adsorbent for enhanced ammonium removal in an aqueous system; different ratios of styrene–acrylic acid copolymers were synthesized by random free radical polymerization and followed by a sulfonation of styrene (acrylic acid 25%–sulfonated styrene 75%) copolymer [P(AA25/SS75)] attained the highest ammonium adsorption capacity (55.8 mg/g) due to the electrostatic attraction between positively charged NH4+ and negatively charged –COO− and –SO3- groups. FTIR spectra for sulfonated polymers illustrated the appearance of characteristic peaks at 100–1,200 cm−1 indicating that the copolymers were successfully sulfonated. The influence of different experimental factors (i.e., contact time, pH, NH4+ concentration, adsorbent dose) on ammonium ion adsorption was investigated; three adsorption isotherm models including Langmuir, Freundlich, and Temkin were used to study the adsorption mechanism. The results indicated that the equilibrium of adsorption can be reached within 30 min; the highest adsorption capacity can be achieved around pH 7. Furthermore, Freundlich isotherm was the most suitable for fitting the experimental data which might expose the heterogeneity of the adsorbent surface. The regeneration and reusability studies were also implemented, and results showed that P(AA25/PSS75) was stable and regenerable using (1 M) sulfuric acid as a desorbing agent over five cycles.\",\"PeriodicalId\":17666,\"journal\":{\"name\":\"Journal of Water Supply: Research and Technology-Aqua\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Supply: Research and Technology-Aqua\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/aqua.2022.075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply: Research and Technology-Aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/aqua.2022.075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一种新型共聚物被用作吸附剂,用于增强水体系中铵的去除;采用随机自由基聚合法合成了不同比例的苯乙烯-丙烯酸共聚物,并对苯乙烯进行磺化反应(丙烯酸25% -磺化苯乙烯75%),共聚物P(AA25/SS75)由于正电荷NH4+与负电荷- coo−和- so3 -基团之间的静电吸引,获得了最高的铵离子吸附量(55.8 mg/g)。磺化聚合物的FTIR光谱显示在100 - 1200 cm−1处出现特征峰,表明共聚物成功磺化。考察了不同实验因素(接触时间、pH、NH4+浓度、吸附剂用量)对铵离子吸附的影响;采用Langmuir、Freundlich和Temkin三种吸附等温线模型研究了吸附机理。结果表明:吸附平衡可在30 min内达到;pH为7时吸附量最高。此外,Freundlich等温线最适合拟合实验数据,这可能暴露了吸附剂表面的不均匀性。结果表明,在(1 M)硫酸的解吸作用下,P(AA25/PSS75)在5个循环过程中具有稳定性和可再生性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced ammonium removal from aquatic systems by a novel copolymer
A novel copolymer was used as an adsorbent for enhanced ammonium removal in an aqueous system; different ratios of styrene–acrylic acid copolymers were synthesized by random free radical polymerization and followed by a sulfonation of styrene (acrylic acid 25%–sulfonated styrene 75%) copolymer [P(AA25/SS75)] attained the highest ammonium adsorption capacity (55.8 mg/g) due to the electrostatic attraction between positively charged NH4+ and negatively charged –COO− and –SO3- groups. FTIR spectra for sulfonated polymers illustrated the appearance of characteristic peaks at 100–1,200 cm−1 indicating that the copolymers were successfully sulfonated. The influence of different experimental factors (i.e., contact time, pH, NH4+ concentration, adsorbent dose) on ammonium ion adsorption was investigated; three adsorption isotherm models including Langmuir, Freundlich, and Temkin were used to study the adsorption mechanism. The results indicated that the equilibrium of adsorption can be reached within 30 min; the highest adsorption capacity can be achieved around pH 7. Furthermore, Freundlich isotherm was the most suitable for fitting the experimental data which might expose the heterogeneity of the adsorbent surface. The regeneration and reusability studies were also implemented, and results showed that P(AA25/PSS75) was stable and regenerable using (1 M) sulfuric acid as a desorbing agent over five cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信