函数场中±1值完全乘法函数的极值行为

Pub Date : 2021-06-24 DOI:10.3336/gm.56.1.06
Nikola Lelas
{"title":"函数场中±1值完全乘法函数的极值行为","authors":"Nikola Lelas","doi":"10.3336/gm.56.1.06","DOIUrl":null,"url":null,"abstract":"We investigate the classical Pólya and Turán conjectures in the context of rational function fields over finite fields 𝔽q. Related to these two conjectures we investigate the sign of truncations of Dirichlet L-functions at point s=1 corresponding to quadratic characters over 𝔽q[t], prove a variant of a theorem of Landau for arbitrary sets of monic, irreducible polynomials over 𝔽q[t] and calculate the mean value of certain variants of the Liouville function over 𝔽q[t].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal behaviour of ± 1-valued completely multiplicative functions in function fields\",\"authors\":\"Nikola Lelas\",\"doi\":\"10.3336/gm.56.1.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the classical Pólya and Turán conjectures in the context of rational function fields over finite fields 𝔽q. Related to these two conjectures we investigate the sign of truncations of Dirichlet L-functions at point s=1 corresponding to quadratic characters over 𝔽q[t], prove a variant of a theorem of Landau for arbitrary sets of monic, irreducible polynomials over 𝔽q[t] and calculate the mean value of certain variants of the Liouville function over 𝔽q[t].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.56.1.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.56.1.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了有限域上有理函数场的经典Pólya和Turán猜想𝔽q。结合这两个猜想,我们研究了𝔽q[t]上二次字符对应的Dirichlet l -函数在s=1点处的截断符号,证明了𝔽q[t]上任意一元不可约多项式集的朗道定理的一个变体,并计算了𝔽q[t]上Liouville函数的某些变体的均值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Extremal behaviour of ± 1-valued completely multiplicative functions in function fields
We investigate the classical Pólya and Turán conjectures in the context of rational function fields over finite fields 𝔽q. Related to these two conjectures we investigate the sign of truncations of Dirichlet L-functions at point s=1 corresponding to quadratic characters over 𝔽q[t], prove a variant of a theorem of Landau for arbitrary sets of monic, irreducible polynomials over 𝔽q[t] and calculate the mean value of certain variants of the Liouville function over 𝔽q[t].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信