{"title":"用于连接大小估计的改进相关抽样","authors":"Taining Wang, C. Chan","doi":"10.1109/ICDE48307.2020.00035","DOIUrl":null,"url":null,"abstract":"Recent research on sampling-based join size estimation has focused on a promising new technique known as correlated sampling. While several variants of this technique have been proposed, there is a lack of a systematic study of this family of techniques. In this paper, we first introduce a framework to characterize its design space in terms of five parameters. Based on this framework, we propose a new correlated sampling based technique to address the limitations of existing techniques. Our new technique is based on using a discrete learning method for estimating the join size from samples. We experimentally compare the performance of multiple variants of our new technique and identify a hybrid variant that provides the best estimation quality. This hybrid variant not only outperforms the state-of-the-art correlated sampling technique, but it is also more robust to small samples and skewed data.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"7 1","pages":"325-336"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Improved Correlated Sampling for Join Size Estimation\",\"authors\":\"Taining Wang, C. Chan\",\"doi\":\"10.1109/ICDE48307.2020.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research on sampling-based join size estimation has focused on a promising new technique known as correlated sampling. While several variants of this technique have been proposed, there is a lack of a systematic study of this family of techniques. In this paper, we first introduce a framework to characterize its design space in terms of five parameters. Based on this framework, we propose a new correlated sampling based technique to address the limitations of existing techniques. Our new technique is based on using a discrete learning method for estimating the join size from samples. We experimentally compare the performance of multiple variants of our new technique and identify a hybrid variant that provides the best estimation quality. This hybrid variant not only outperforms the state-of-the-art correlated sampling technique, but it is also more robust to small samples and skewed data.\",\"PeriodicalId\":6709,\"journal\":{\"name\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"volume\":\"7 1\",\"pages\":\"325-336\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE48307.2020.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved Correlated Sampling for Join Size Estimation
Recent research on sampling-based join size estimation has focused on a promising new technique known as correlated sampling. While several variants of this technique have been proposed, there is a lack of a systematic study of this family of techniques. In this paper, we first introduce a framework to characterize its design space in terms of five parameters. Based on this framework, we propose a new correlated sampling based technique to address the limitations of existing techniques. Our new technique is based on using a discrete learning method for estimating the join size from samples. We experimentally compare the performance of multiple variants of our new technique and identify a hybrid variant that provides the best estimation quality. This hybrid variant not only outperforms the state-of-the-art correlated sampling technique, but it is also more robust to small samples and skewed data.