I. Campos, M. D. Brida, G. D. Divitiis, A. Lytle, M. Papinutto, A. Vladikas
{"title":"$\\chi$SF接近电弱尺度","authors":"I. Campos, M. D. Brida, G. D. Divitiis, A. Lytle, M. Papinutto, A. Vladikas","doi":"10.22323/1.363.0202","DOIUrl":null,"url":null,"abstract":"We employ the chirally rotated Schrodinger functional ($\\chi$SF) to study two-point fermion bilinear correlation functions used in the determination of $Z_{A,V,S,P,T}$ on a series of well-tuned ensembles. The gauge configurations, which span renormalisation scales from 4 to 70~GeV, are generated with $N_{\\rm f}=3$ massless flavors and Schrodinger Functional (SF) boundary conditions. Valence quarks are computed with $\\chi$SF boundary conditions. We show preliminary results on the tuning of the $\\chi$SF Symanzik coefficient $z_f$ and the scaling of the axial current normalization $Z_{\\rm A}$. Moreover we carry out a detailed comparison with the expectations from one-loop perturbation theory. Finally we outline how automatically $\\mathrm{O}(a)$-improved $B_{\\rm K}$ matrix elements, including BSM contributions, can be computed in a $\\chi$SF renormalization scheme.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$\\\\chi$SF near the electroweak scale\",\"authors\":\"I. Campos, M. D. Brida, G. D. Divitiis, A. Lytle, M. Papinutto, A. Vladikas\",\"doi\":\"10.22323/1.363.0202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We employ the chirally rotated Schrodinger functional ($\\\\chi$SF) to study two-point fermion bilinear correlation functions used in the determination of $Z_{A,V,S,P,T}$ on a series of well-tuned ensembles. The gauge configurations, which span renormalisation scales from 4 to 70~GeV, are generated with $N_{\\\\rm f}=3$ massless flavors and Schrodinger Functional (SF) boundary conditions. Valence quarks are computed with $\\\\chi$SF boundary conditions. We show preliminary results on the tuning of the $\\\\chi$SF Symanzik coefficient $z_f$ and the scaling of the axial current normalization $Z_{\\\\rm A}$. Moreover we carry out a detailed comparison with the expectations from one-loop perturbation theory. Finally we outline how automatically $\\\\mathrm{O}(a)$-improved $B_{\\\\rm K}$ matrix elements, including BSM contributions, can be computed in a $\\\\chi$SF renormalization scheme.\",\"PeriodicalId\":8440,\"journal\":{\"name\":\"arXiv: High Energy Physics - Lattice\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Physics - Lattice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.363.0202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.363.0202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We employ the chirally rotated Schrodinger functional ($\chi$SF) to study two-point fermion bilinear correlation functions used in the determination of $Z_{A,V,S,P,T}$ on a series of well-tuned ensembles. The gauge configurations, which span renormalisation scales from 4 to 70~GeV, are generated with $N_{\rm f}=3$ massless flavors and Schrodinger Functional (SF) boundary conditions. Valence quarks are computed with $\chi$SF boundary conditions. We show preliminary results on the tuning of the $\chi$SF Symanzik coefficient $z_f$ and the scaling of the axial current normalization $Z_{\rm A}$. Moreover we carry out a detailed comparison with the expectations from one-loop perturbation theory. Finally we outline how automatically $\mathrm{O}(a)$-improved $B_{\rm K}$ matrix elements, including BSM contributions, can be computed in a $\chi$SF renormalization scheme.