G. Zheng, Hao Dong, Ze Li, Songfeng Liu, Bin Wu, C. He
{"title":"柱状结构缺陷的形状重建","authors":"G. Zheng, Hao Dong, Ze Li, Songfeng Liu, Bin Wu, C. He","doi":"10.1080/09349847.2023.2175281","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study, a cylindrical test specimen with a 3D through-hole defect was processed, and the reflected echo data of the defect at different cross-sections were obtained by an ultrasonic testing detection system. On this basis, two data processing methods were designed to obtain two types of 3D reconstruction images of defects, and the reconstruction effects of two methods were compared using the real defects. In general, this study achieved a relatively accurate 3D reconstruction of through-hole defects at a low cost. Our methods provided lower cost than current state-of-the-art approaches.","PeriodicalId":54493,"journal":{"name":"Research in Nondestructive Evaluation","volume":"391 1","pages":"277 - 296"},"PeriodicalIF":1.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shape Reconstruction of Columnar Structure Defect\",\"authors\":\"G. Zheng, Hao Dong, Ze Li, Songfeng Liu, Bin Wu, C. He\",\"doi\":\"10.1080/09349847.2023.2175281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this study, a cylindrical test specimen with a 3D through-hole defect was processed, and the reflected echo data of the defect at different cross-sections were obtained by an ultrasonic testing detection system. On this basis, two data processing methods were designed to obtain two types of 3D reconstruction images of defects, and the reconstruction effects of two methods were compared using the real defects. In general, this study achieved a relatively accurate 3D reconstruction of through-hole defects at a low cost. Our methods provided lower cost than current state-of-the-art approaches.\",\"PeriodicalId\":54493,\"journal\":{\"name\":\"Research in Nondestructive Evaluation\",\"volume\":\"391 1\",\"pages\":\"277 - 296\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09349847.2023.2175281\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09349847.2023.2175281","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
ABSTRACT In this study, a cylindrical test specimen with a 3D through-hole defect was processed, and the reflected echo data of the defect at different cross-sections were obtained by an ultrasonic testing detection system. On this basis, two data processing methods were designed to obtain two types of 3D reconstruction images of defects, and the reconstruction effects of two methods were compared using the real defects. In general, this study achieved a relatively accurate 3D reconstruction of through-hole defects at a low cost. Our methods provided lower cost than current state-of-the-art approaches.
期刊介绍:
Research in Nondestructive Evaluation® is the archival research journal of the American Society for Nondestructive Testing, Inc. RNDE® contains the results of original research in all areas of nondestructive evaluation (NDE). The journal covers experimental and theoretical investigations dealing with the scientific and engineering bases of NDE, its measurement and methodology, and a wide range of applications to materials and structures that relate to the entire life cycle, from manufacture to use and retirement.
Illustrative topics include advances in the underlying science of acoustic, thermal, electrical, magnetic, optical and ionizing radiation techniques and their applications to NDE problems. These problems include the nondestructive characterization of a wide variety of material properties and their degradation in service, nonintrusive sensors for monitoring manufacturing and materials processes, new techniques and combinations of techniques for detecting and characterizing hidden discontinuities and distributed damage in materials, standardization concepts and quantitative approaches for advanced NDE techniques, and long-term continuous monitoring of structures and assemblies. Of particular interest is research which elucidates how to evaluate the effects of imperfect material condition, as quantified by nondestructive measurement, on the functional performance.