heawood地图上色问题的解法——案例3、5、6和9

J.W.T. Youngs
{"title":"heawood地图上色问题的解法——案例3、5、6和9","authors":"J.W.T. Youngs","doi":"10.1016/S0021-9800(70)80075-8","DOIUrl":null,"url":null,"abstract":"<div><p>This paper gives a proof of the fact that the chromatic number of an orientable surface of genus <em>p</em> is equal to the integral part of <span><math><mrow><mrow><mrow><mrow><mo>(</mo><mrow><mn>7</mn><mo>+</mo><msqrt><mrow><mn>1</mn><mo>+</mo><mn>48</mn><mi>p</mi></mrow></msqrt></mrow><mo>)</mo></mrow></mrow><mo>/</mo><mn>2</mn></mrow></mrow></math></span> whenever the latter is congruent to 3, 5, 6, or 9 modulo 12.</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"8 2","pages":"Pages 175-219"},"PeriodicalIF":0.0000,"publicationDate":"1970-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80075-8","citationCount":"27","resultStr":"{\"title\":\"Solution of the heawood map-coloring problem—Cases 3, 5, 6, and 9\",\"authors\":\"J.W.T. Youngs\",\"doi\":\"10.1016/S0021-9800(70)80075-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper gives a proof of the fact that the chromatic number of an orientable surface of genus <em>p</em> is equal to the integral part of <span><math><mrow><mrow><mrow><mrow><mo>(</mo><mrow><mn>7</mn><mo>+</mo><msqrt><mrow><mn>1</mn><mo>+</mo><mn>48</mn><mi>p</mi></mrow></msqrt></mrow><mo>)</mo></mrow></mrow><mo>/</mo><mn>2</mn></mrow></mrow></math></span> whenever the latter is congruent to 3, 5, 6, or 9 modulo 12.</p></div>\",\"PeriodicalId\":100765,\"journal\":{\"name\":\"Journal of Combinatorial Theory\",\"volume\":\"8 2\",\"pages\":\"Pages 175-219\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1970-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80075-8\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021980070800758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021980070800758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

本文证明了p属的可定向曲面的色数等于(7+1+48p)/2的积分部分,当(7+1+48p)/2同于3、5、6或9模12。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solution of the heawood map-coloring problem—Cases 3, 5, 6, and 9

This paper gives a proof of the fact that the chromatic number of an orientable surface of genus p is equal to the integral part of (7+1+48p)/2 whenever the latter is congruent to 3, 5, 6, or 9 modulo 12.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信