加泰罗尼亚对诱导的随机图

IF 0.4 Q4 MATHEMATICS, APPLIED
D. Kroes, Sam Spiro
{"title":"加泰罗尼亚对诱导的随机图","authors":"D. Kroes, Sam Spiro","doi":"10.4310/joc.2021.v12.n4.a5","DOIUrl":null,"url":null,"abstract":"We consider Catalan-pair graphs, a family of graphs that can be viewed as representing certain interactions between pairs of objects which are enumerated by the Catalan numbers. In this paper we study random Catalan-pair graphs and deduce various properties of these random graphs. In particular, we asymptotically determine the expected number of edges and isolated vertices, and more generally we determine the expected number of (induced) subgraphs isomorphic to a given connected graph.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"62 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Random graphs induced by Catalan pairs\",\"authors\":\"D. Kroes, Sam Spiro\",\"doi\":\"10.4310/joc.2021.v12.n4.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider Catalan-pair graphs, a family of graphs that can be viewed as representing certain interactions between pairs of objects which are enumerated by the Catalan numbers. In this paper we study random Catalan-pair graphs and deduce various properties of these random graphs. In particular, we asymptotically determine the expected number of edges and isolated vertices, and more generally we determine the expected number of (induced) subgraphs isomorphic to a given connected graph.\",\"PeriodicalId\":44683,\"journal\":{\"name\":\"Journal of Combinatorics\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/joc.2021.v12.n4.a5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2021.v12.n4.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑加泰罗尼亚对图,这是一组图,可以被视为表示由加泰罗尼亚数枚举的对象对之间的某些相互作用。本文研究了随机加泰罗尼亚对图,并推导了这些随机图的各种性质。特别地,我们渐近地确定了边和孤立顶点的期望数目,更一般地,我们确定了与给定连通图同构的(诱导)子图的期望数目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random graphs induced by Catalan pairs
We consider Catalan-pair graphs, a family of graphs that can be viewed as representing certain interactions between pairs of objects which are enumerated by the Catalan numbers. In this paper we study random Catalan-pair graphs and deduce various properties of these random graphs. In particular, we asymptotically determine the expected number of edges and isolated vertices, and more generally we determine the expected number of (induced) subgraphs isomorphic to a given connected graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信