高密度聚乙烯和丁醇-汽油混合物:材料相容性研究

Preeti Nair, Meenakshi Hn
{"title":"高密度聚乙烯和丁醇-汽油混合物:材料相容性研究","authors":"Preeti Nair, Meenakshi Hn","doi":"10.1177/00952443231191764","DOIUrl":null,"url":null,"abstract":"We are now well on the path of transitioning away from the fossil fuel resources on cutting down their consumption as much as possible. The fuels chosen for this study include ethanol-butanol (EB) -gasoline, acetone-butanol-ethanol (ABE) -gasoline and methanol-butanol (MB) -gasoline blends. High density polyethylene (HDPE) is a polymer that is extensively used in several auto parts and fuelling infrastructure materials. Incompatibility between these blends and fueling infrastructure system should be studied comprehensively for the adoption of these alternative fuels to be faster and hassle free. This study intends to gauge the changes in HDPE because of its immersion in the gasoline-alcohol blends mentioned for a period of 4, 30 & 90 days. The changes were ascertained by studying the mass, tensile strength, elongation, and hardness of the samples before and after immersion into blends. Sophisticated techniques were used to characterize the morphological and chemical changes of the polymer. The results showed that there was an increase in the mass of the HDPE samples as a result of the absorption of the blends by the polymeric samples. A decrease in tensile strength and hardness values were recorded for the samples whereas the elongation values were found to increase. Studies revealed that there was neither fuel degradation nor any oxidative degradation of the polymeric sample. The results indicated an increase in the mass and elongation of the HDPE as a result of the absorption of the fuel leads to lesser stable polymeric matrix and decrease in the percentage crystallinity. Hence this investigation led us to the conclusion that all the fuels blends studied are highly compatible with HDPE, even in instances where a change in the mechanical properties is seen, it is similar to that seen in gasoline.","PeriodicalId":15613,"journal":{"name":"Journal of Elastomers & Plastics","volume":"65 1","pages":"1077 - 1095"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High density polyethylene and butanol-gasoline blends: A material compatibility study\",\"authors\":\"Preeti Nair, Meenakshi Hn\",\"doi\":\"10.1177/00952443231191764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are now well on the path of transitioning away from the fossil fuel resources on cutting down their consumption as much as possible. The fuels chosen for this study include ethanol-butanol (EB) -gasoline, acetone-butanol-ethanol (ABE) -gasoline and methanol-butanol (MB) -gasoline blends. High density polyethylene (HDPE) is a polymer that is extensively used in several auto parts and fuelling infrastructure materials. Incompatibility between these blends and fueling infrastructure system should be studied comprehensively for the adoption of these alternative fuels to be faster and hassle free. This study intends to gauge the changes in HDPE because of its immersion in the gasoline-alcohol blends mentioned for a period of 4, 30 & 90 days. The changes were ascertained by studying the mass, tensile strength, elongation, and hardness of the samples before and after immersion into blends. Sophisticated techniques were used to characterize the morphological and chemical changes of the polymer. The results showed that there was an increase in the mass of the HDPE samples as a result of the absorption of the blends by the polymeric samples. A decrease in tensile strength and hardness values were recorded for the samples whereas the elongation values were found to increase. Studies revealed that there was neither fuel degradation nor any oxidative degradation of the polymeric sample. The results indicated an increase in the mass and elongation of the HDPE as a result of the absorption of the fuel leads to lesser stable polymeric matrix and decrease in the percentage crystallinity. Hence this investigation led us to the conclusion that all the fuels blends studied are highly compatible with HDPE, even in instances where a change in the mechanical properties is seen, it is similar to that seen in gasoline.\",\"PeriodicalId\":15613,\"journal\":{\"name\":\"Journal of Elastomers & Plastics\",\"volume\":\"65 1\",\"pages\":\"1077 - 1095\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Elastomers & Plastics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00952443231191764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elastomers & Plastics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00952443231191764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们现在正走在从化石燃料资源过渡到尽可能减少其消耗的道路上。本研究选择的燃料包括乙醇-丁醇(EB) -汽油,丙酮-丁醇-乙醇(ABE) -汽油和甲醇-丁醇(MB) -汽油混合物。高密度聚乙烯(HDPE)是一种广泛用于几种汽车零部件和燃料基础设施材料的聚合物。为了更快、更方便地采用这些替代燃料,应全面研究这些混合燃料与燃料基础设施系统之间的不兼容性。本研究旨在测量HDPE在上述汽油-酒精混合物中浸泡4,30和90天后的变化。通过研究样品浸入共混物前后的质量、抗拉强度、伸长率和硬度来确定其变化。使用复杂的技术来表征聚合物的形态和化学变化。结果表明,由于聚合物样品对共混物的吸收,HDPE样品的质量有所增加。在抗拉强度和硬度值的下降记录的样品,而伸长率值被发现增加。研究表明,聚合物样品既没有燃料降解,也没有氧化降解。结果表明,由于燃料的吸收,HDPE的质量和伸长率增加,聚合物基体稳定性降低,结晶度下降。因此,这项调查使我们得出结论,所研究的所有燃料混合物都与HDPE高度相容,即使在机械性能发生变化的情况下,也与汽油中的变化相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High density polyethylene and butanol-gasoline blends: A material compatibility study
We are now well on the path of transitioning away from the fossil fuel resources on cutting down their consumption as much as possible. The fuels chosen for this study include ethanol-butanol (EB) -gasoline, acetone-butanol-ethanol (ABE) -gasoline and methanol-butanol (MB) -gasoline blends. High density polyethylene (HDPE) is a polymer that is extensively used in several auto parts and fuelling infrastructure materials. Incompatibility between these blends and fueling infrastructure system should be studied comprehensively for the adoption of these alternative fuels to be faster and hassle free. This study intends to gauge the changes in HDPE because of its immersion in the gasoline-alcohol blends mentioned for a period of 4, 30 & 90 days. The changes were ascertained by studying the mass, tensile strength, elongation, and hardness of the samples before and after immersion into blends. Sophisticated techniques were used to characterize the morphological and chemical changes of the polymer. The results showed that there was an increase in the mass of the HDPE samples as a result of the absorption of the blends by the polymeric samples. A decrease in tensile strength and hardness values were recorded for the samples whereas the elongation values were found to increase. Studies revealed that there was neither fuel degradation nor any oxidative degradation of the polymeric sample. The results indicated an increase in the mass and elongation of the HDPE as a result of the absorption of the fuel leads to lesser stable polymeric matrix and decrease in the percentage crystallinity. Hence this investigation led us to the conclusion that all the fuels blends studied are highly compatible with HDPE, even in instances where a change in the mechanical properties is seen, it is similar to that seen in gasoline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信