{"title":"尖锐的Gagliardo-Nirenberg不等式及其在非齐次非线性分数型问题中的应用","authors":"D. Bhimani, H. Hajaiej, S. Haque, Tingjian Luo","doi":"10.3934/eect.2022033","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is threefold. Firstly, we establish a Gagliardo-Nirenberg inequality with optimal constant, which involves a fractional norm and an inhomogeneous nonlinearity. Secondly, as an application of this inequality, we study ground state standing waves to a nonlinear Schrödinger equation (NLS) with a mixed fractional Laplacians and a inhomogeneous nonlinearity, and consider a minimization problem which gives the existence of ground state solutions with prescribed mass. In particular, by making use of this Gagliardo-Nirenberg inequality and its optimal constant, we give a sufficient and necessary condition for the existence results. Finally, we develop local wellposedness theory for NLS with a mixed fractional Laplacians and a inhomogeneous nonlinearity. In the process, we prove Strichartz estimates in Lorentz spaces which may be of independent interest.","PeriodicalId":48833,"journal":{"name":"Evolution Equations and Control Theory","volume":"22 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A sharp Gagliardo-Nirenberg inequality and its application to fractional problems with inhomogeneous nonlinearity\",\"authors\":\"D. Bhimani, H. Hajaiej, S. Haque, Tingjian Luo\",\"doi\":\"10.3934/eect.2022033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is threefold. Firstly, we establish a Gagliardo-Nirenberg inequality with optimal constant, which involves a fractional norm and an inhomogeneous nonlinearity. Secondly, as an application of this inequality, we study ground state standing waves to a nonlinear Schrödinger equation (NLS) with a mixed fractional Laplacians and a inhomogeneous nonlinearity, and consider a minimization problem which gives the existence of ground state solutions with prescribed mass. In particular, by making use of this Gagliardo-Nirenberg inequality and its optimal constant, we give a sufficient and necessary condition for the existence results. Finally, we develop local wellposedness theory for NLS with a mixed fractional Laplacians and a inhomogeneous nonlinearity. In the process, we prove Strichartz estimates in Lorentz spaces which may be of independent interest.\",\"PeriodicalId\":48833,\"journal\":{\"name\":\"Evolution Equations and Control Theory\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution Equations and Control Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/eect.2022033\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Equations and Control Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/eect.2022033","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A sharp Gagliardo-Nirenberg inequality and its application to fractional problems with inhomogeneous nonlinearity
The purpose of this paper is threefold. Firstly, we establish a Gagliardo-Nirenberg inequality with optimal constant, which involves a fractional norm and an inhomogeneous nonlinearity. Secondly, as an application of this inequality, we study ground state standing waves to a nonlinear Schrödinger equation (NLS) with a mixed fractional Laplacians and a inhomogeneous nonlinearity, and consider a minimization problem which gives the existence of ground state solutions with prescribed mass. In particular, by making use of this Gagliardo-Nirenberg inequality and its optimal constant, we give a sufficient and necessary condition for the existence results. Finally, we develop local wellposedness theory for NLS with a mixed fractional Laplacians and a inhomogeneous nonlinearity. In the process, we prove Strichartz estimates in Lorentz spaces which may be of independent interest.
期刊介绍:
EECT is primarily devoted to papers on analysis and control of infinite dimensional systems with emphasis on applications to PDE''s and FDEs. Topics include:
* Modeling of physical systems as infinite-dimensional processes
* Direct problems such as existence, regularity and well-posedness
* Stability, long-time behavior and associated dynamical attractors
* Indirect problems such as exact controllability, reachability theory and inverse problems
* Optimization - including shape optimization - optimal control, game theory and calculus of variations
* Well-posedness, stability and control of coupled systems with an interface. Free boundary problems and problems with moving interface(s)
* Applications of the theory to physics, chemistry, engineering, economics, medicine and biology