粒子探测器如何辅助TFT-LCD制造缺陷的目视检测

M. Khakifirooz, M. Fathi
{"title":"粒子探测器如何辅助TFT-LCD制造缺陷的目视检测","authors":"M. Khakifirooz, M. Fathi","doi":"10.1145/3410530.3414596","DOIUrl":null,"url":null,"abstract":"Traditional defect classification of TFT-LCD array processing leaned on human decision-maker in which visual inspection used to categorize defects and consequently identify the rout-causes of defects. In practice, the main sources of defects in the TFT-LCD array process are particles. Due to the huge size of the machinery and production tools in the TFT-LCD array process, the sensor allocation for particle detection plays a critical role in the inadequacy and quality of sensor data. Therefore, where the adequacy and efficiency of human performance depend on human factors, emotion, and level of attention, this study aims to design a semi-automatic defect detection and classification method based on information capture by particle detector sensors to reduce the cognitive load devaluation and proceed with the process of defect classification.","PeriodicalId":7183,"journal":{"name":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How particle detector can aid visual inspection for defect detection of TFT-LCD manufacturing\",\"authors\":\"M. Khakifirooz, M. Fathi\",\"doi\":\"10.1145/3410530.3414596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional defect classification of TFT-LCD array processing leaned on human decision-maker in which visual inspection used to categorize defects and consequently identify the rout-causes of defects. In practice, the main sources of defects in the TFT-LCD array process are particles. Due to the huge size of the machinery and production tools in the TFT-LCD array process, the sensor allocation for particle detection plays a critical role in the inadequacy and quality of sensor data. Therefore, where the adequacy and efficiency of human performance depend on human factors, emotion, and level of attention, this study aims to design a semi-automatic defect detection and classification method based on information capture by particle detector sensors to reduce the cognitive load devaluation and proceed with the process of defect classification.\",\"PeriodicalId\":7183,\"journal\":{\"name\":\"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3410530.3414596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3410530.3414596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的TFT-LCD阵列加工缺陷分类依赖于人工决策,通过目视检测对缺陷进行分类,从而识别缺陷产生的路径原因。在实际应用中,TFT-LCD阵列工艺中缺陷的主要来源是粒子。由于TFT-LCD阵列过程中机械和生产工具的巨大尺寸,用于粒子检测的传感器分配对传感器数据的不足和质量起着至关重要的作用。因此,在人的因素、情绪和注意力水平决定了人的表现是否足够和效率的情况下,本研究旨在设计一种基于粒子检测器传感器信息捕获的半自动缺陷检测和分类方法,以减少认知负荷贬值,并进行缺陷分类过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How particle detector can aid visual inspection for defect detection of TFT-LCD manufacturing
Traditional defect classification of TFT-LCD array processing leaned on human decision-maker in which visual inspection used to categorize defects and consequently identify the rout-causes of defects. In practice, the main sources of defects in the TFT-LCD array process are particles. Due to the huge size of the machinery and production tools in the TFT-LCD array process, the sensor allocation for particle detection plays a critical role in the inadequacy and quality of sensor data. Therefore, where the adequacy and efficiency of human performance depend on human factors, emotion, and level of attention, this study aims to design a semi-automatic defect detection and classification method based on information capture by particle detector sensors to reduce the cognitive load devaluation and proceed with the process of defect classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信