A. Fouly, Ahmed M. R. Fathelbab, A. Abouelsoud, T. Tsuchiya, O. Tabata
{"title":"不规则表面软组织刚度检测微触觉传感器的设计与仿真","authors":"A. Fouly, Ahmed M. R. Fathelbab, A. Abouelsoud, T. Tsuchiya, O. Tabata","doi":"10.1166/sl.2020.4207","DOIUrl":null,"url":null,"abstract":"Tactile sensors become an essential part of many applications in our life. Integrating tactile sensors with surgical tools used in MIS is significant to compensate for the shortage of touch feeling of soft tissues and organs comparing with traditional surgeries. This paper presents\n a detailed design of a micro tactile sensor for measuring the stiffness of soft tissue with an irregular surface. The sensor consists of five cantilever springs with different stiffness. A spring in the middle has a relatively low stiffness surrounded by 4 springs have relatively equal high\n stiffness to compensate for the soft tissue contact error in the longitudinal and lateral directions. Sensor parameters are selected to ensure high sensitivity and linearity with taking into consideration the cross-talk effect among the sensor springs tips. A detailed design of the sensor\n structure in the microscale is conducted based on some constraints related to MEMS fabrication. A finite element analysis (FEA) of the sensor structure is conducted to evaluate sensor structure performance using CoventorWare software. Then, an FEA for the piezo-resistors, as a signal transduction\n method, is conducted which maps the sensor output to an electrical signal. The results prove that the sensor can differentiate among different soft-tissue stiffness within the selected range independent of the applied distance between the sensor and the tissue with an error below 3% even with\n inclination angle between the sensor and the tissue ±3°. Furthermore, a linear performance has been achieved between the soft-tissue stiffness and the sensor output.","PeriodicalId":21781,"journal":{"name":"Sensor Letters","volume":"31 1","pages":"200-209"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Simulation of Micro Tactile Sensor for Stiffness Detection of Soft Tissue with Irregular Surface\",\"authors\":\"A. Fouly, Ahmed M. R. Fathelbab, A. Abouelsoud, T. Tsuchiya, O. Tabata\",\"doi\":\"10.1166/sl.2020.4207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tactile sensors become an essential part of many applications in our life. Integrating tactile sensors with surgical tools used in MIS is significant to compensate for the shortage of touch feeling of soft tissues and organs comparing with traditional surgeries. This paper presents\\n a detailed design of a micro tactile sensor for measuring the stiffness of soft tissue with an irregular surface. The sensor consists of five cantilever springs with different stiffness. A spring in the middle has a relatively low stiffness surrounded by 4 springs have relatively equal high\\n stiffness to compensate for the soft tissue contact error in the longitudinal and lateral directions. Sensor parameters are selected to ensure high sensitivity and linearity with taking into consideration the cross-talk effect among the sensor springs tips. A detailed design of the sensor\\n structure in the microscale is conducted based on some constraints related to MEMS fabrication. A finite element analysis (FEA) of the sensor structure is conducted to evaluate sensor structure performance using CoventorWare software. Then, an FEA for the piezo-resistors, as a signal transduction\\n method, is conducted which maps the sensor output to an electrical signal. The results prove that the sensor can differentiate among different soft-tissue stiffness within the selected range independent of the applied distance between the sensor and the tissue with an error below 3% even with\\n inclination angle between the sensor and the tissue ±3°. Furthermore, a linear performance has been achieved between the soft-tissue stiffness and the sensor output.\",\"PeriodicalId\":21781,\"journal\":{\"name\":\"Sensor Letters\",\"volume\":\"31 1\",\"pages\":\"200-209\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensor Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/sl.2020.4207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/sl.2020.4207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Simulation of Micro Tactile Sensor for Stiffness Detection of Soft Tissue with Irregular Surface
Tactile sensors become an essential part of many applications in our life. Integrating tactile sensors with surgical tools used in MIS is significant to compensate for the shortage of touch feeling of soft tissues and organs comparing with traditional surgeries. This paper presents
a detailed design of a micro tactile sensor for measuring the stiffness of soft tissue with an irregular surface. The sensor consists of five cantilever springs with different stiffness. A spring in the middle has a relatively low stiffness surrounded by 4 springs have relatively equal high
stiffness to compensate for the soft tissue contact error in the longitudinal and lateral directions. Sensor parameters are selected to ensure high sensitivity and linearity with taking into consideration the cross-talk effect among the sensor springs tips. A detailed design of the sensor
structure in the microscale is conducted based on some constraints related to MEMS fabrication. A finite element analysis (FEA) of the sensor structure is conducted to evaluate sensor structure performance using CoventorWare software. Then, an FEA for the piezo-resistors, as a signal transduction
method, is conducted which maps the sensor output to an electrical signal. The results prove that the sensor can differentiate among different soft-tissue stiffness within the selected range independent of the applied distance between the sensor and the tissue with an error below 3% even with
inclination angle between the sensor and the tissue ±3°. Furthermore, a linear performance has been achieved between the soft-tissue stiffness and the sensor output.
期刊介绍:
The growing interest and activity in the field of sensor technologies requires a forum for rapid dissemination of important results: Sensor Letters is that forum. Sensor Letters offers scientists, engineers and medical experts timely, peer-reviewed research on sensor science and technology of the highest quality. Sensor Letters publish original rapid communications, full papers and timely state-of-the-art reviews encompassing the fundamental and applied research on sensor science and technology in all fields of science, engineering, and medicine. Highest priority will be given to short communications reporting important new scientific and technological findings.