{"title":"具有多个不连续界面的透射波方程反源问题的稳定性","authors":"Zifan Jiang, Wensheng Zhang","doi":"10.1051/cocv/2023031","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a transmission wave equation in N embedded domains with multiple interfaces of discontinuous coefficients in ℝ2. We study the global stability in determining the source term from a one-measurement data of wavefield velocity in a subboundary over a time interval. We prove the stability estimate for this inverse source problem by a combination of the local hyperbolic/elliptic Carleman estimates and the Fourier-Bros-Iagolniter transformation. Our method could be generalized to general dimensions since the weight functions and Carleman estimates are independent of the dimensions.","PeriodicalId":50500,"journal":{"name":"Esaim-Control Optimisation and Calculus of Variations","volume":"150 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of inverse source problem for a transmission wave equation with multiple interfaces of discontinuity\",\"authors\":\"Zifan Jiang, Wensheng Zhang\",\"doi\":\"10.1051/cocv/2023031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a transmission wave equation in N embedded domains with multiple interfaces of discontinuous coefficients in ℝ2. We study the global stability in determining the source term from a one-measurement data of wavefield velocity in a subboundary over a time interval. We prove the stability estimate for this inverse source problem by a combination of the local hyperbolic/elliptic Carleman estimates and the Fourier-Bros-Iagolniter transformation. Our method could be generalized to general dimensions since the weight functions and Carleman estimates are independent of the dimensions.\",\"PeriodicalId\":50500,\"journal\":{\"name\":\"Esaim-Control Optimisation and Calculus of Variations\",\"volume\":\"150 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Control Optimisation and Calculus of Variations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/cocv/2023031\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Control Optimisation and Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/cocv/2023031","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Stability of inverse source problem for a transmission wave equation with multiple interfaces of discontinuity
In this paper, we consider a transmission wave equation in N embedded domains with multiple interfaces of discontinuous coefficients in ℝ2. We study the global stability in determining the source term from a one-measurement data of wavefield velocity in a subboundary over a time interval. We prove the stability estimate for this inverse source problem by a combination of the local hyperbolic/elliptic Carleman estimates and the Fourier-Bros-Iagolniter transformation. Our method could be generalized to general dimensions since the weight functions and Carleman estimates are independent of the dimensions.
期刊介绍:
ESAIM: COCV strives to publish rapidly and efficiently papers and surveys in the areas of Control, Optimisation and Calculus of Variations.
Articles may be theoretical, computational, or both, and they will cover contemporary subjects with impact in forefront technology, biosciences, materials science, computer vision, continuum physics, decision sciences and other allied disciplines.
Targeted topics include:
in control: modeling, controllability, optimal control, stabilization, control design, hybrid control, robustness analysis, numerical and computational methods for control, stochastic or deterministic, continuous or discrete control systems, finite-dimensional or infinite-dimensional control systems, geometric control, quantum control, game theory;
in optimisation: mathematical programming, large scale systems, stochastic optimisation, combinatorial optimisation, shape optimisation, convex or nonsmooth optimisation, inverse problems, interior point methods, duality methods, numerical methods, convergence and complexity, global optimisation, optimisation and dynamical systems, optimal transport, machine learning, image or signal analysis;
in calculus of variations: variational methods for differential equations and Hamiltonian systems, variational inequalities; semicontinuity and convergence, existence and regularity of minimizers and critical points of functionals, relaxation; geometric problems and the use and development of geometric measure theory tools; problems involving randomness; viscosity solutions; numerical methods; homogenization, multiscale and singular perturbation problems.