降冰片烯衍生物多孔有机高分子材料的设计与合成

IF 11.1 2区 化学 Q1 POLYMER SCIENCE
D. Alentiev, M. Bermeshev
{"title":"降冰片烯衍生物多孔有机高分子材料的设计与合成","authors":"D. Alentiev, M. Bermeshev","doi":"10.1080/15583724.2021.1933026","DOIUrl":null,"url":null,"abstract":"Abstract The interest in porous organic materials derived from norbornenes is driven by versatile chemistry of norbornenes, fine-tunable structure of these polymers, high accessible surface area, and large free volume of polynorbornenes for technical applications in adsorption, membrane separation, gas storage, and heterogeneous catalysis. This comprehensive review surveys recent research trends in the development of porous polynorbornenes. A rational design was achieved in metathesis, addition, and CANAL polymers as an extension of the modular strategy using norbornene motifs as building blocks. Tuning the structure of norbornene-containing monomer units allowed obtaining high-free-volume polymers with apparent Brunauer–Emmett–Teller (BET) surface areas up to 1000 m2/g that made these materials promising for various engineering applications such as membrane gas separation, gas sorbents, CO2 capture, scaffolds to support catalysts, or reagents for catalysis. The synthesis and porous characteristics of polynorbornenes are presented along with the discussion of correlations between the chemical structure of these materials and their porous structures. Possible important applications of porous polynorbornenes are also emphasized.","PeriodicalId":20326,"journal":{"name":"Polymer Reviews","volume":"132 1","pages":"400 - 437"},"PeriodicalIF":11.1000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Design and Synthesis of Porous Organic Polymeric Materials from Norbornene Derivatives\",\"authors\":\"D. Alentiev, M. Bermeshev\",\"doi\":\"10.1080/15583724.2021.1933026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The interest in porous organic materials derived from norbornenes is driven by versatile chemistry of norbornenes, fine-tunable structure of these polymers, high accessible surface area, and large free volume of polynorbornenes for technical applications in adsorption, membrane separation, gas storage, and heterogeneous catalysis. This comprehensive review surveys recent research trends in the development of porous polynorbornenes. A rational design was achieved in metathesis, addition, and CANAL polymers as an extension of the modular strategy using norbornene motifs as building blocks. Tuning the structure of norbornene-containing monomer units allowed obtaining high-free-volume polymers with apparent Brunauer–Emmett–Teller (BET) surface areas up to 1000 m2/g that made these materials promising for various engineering applications such as membrane gas separation, gas sorbents, CO2 capture, scaffolds to support catalysts, or reagents for catalysis. The synthesis and porous characteristics of polynorbornenes are presented along with the discussion of correlations between the chemical structure of these materials and their porous structures. Possible important applications of porous polynorbornenes are also emphasized.\",\"PeriodicalId\":20326,\"journal\":{\"name\":\"Polymer Reviews\",\"volume\":\"132 1\",\"pages\":\"400 - 437\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2021-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/15583724.2021.1933026\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15583724.2021.1933026","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 11

摘要

从降冰片烯衍生的多孔有机材料的兴趣是由降冰片烯的多功能化学,这些聚合物的精细可调结构,高可达表面积,以及大的自由体积的聚降冰片烯的技术应用在吸附,膜分离,气体储存和多相催化。本文综述了近年来多孔聚降冰片烯的研究进展。在复合、加法和CANAL聚合物中实现了合理的设计,作为模块化策略的延伸,使用降冰片烯基元作为构建块。调整含降木片烯单体单元的结构,可以获得具有表观brunauer - emmet - teller (BET)表面积高达1000 m2/g的高自由体积聚合物,这使得这些材料有望用于各种工程应用,如膜气体分离、气体吸附剂、二氧化碳捕获、支撑催化剂的支架或催化试剂。介绍了聚降冰片烯的合成及其多孔特性,并讨论了这些材料的化学结构与其多孔结构之间的关系。并着重介绍了多孔聚降冰片烯可能的重要应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Synthesis of Porous Organic Polymeric Materials from Norbornene Derivatives
Abstract The interest in porous organic materials derived from norbornenes is driven by versatile chemistry of norbornenes, fine-tunable structure of these polymers, high accessible surface area, and large free volume of polynorbornenes for technical applications in adsorption, membrane separation, gas storage, and heterogeneous catalysis. This comprehensive review surveys recent research trends in the development of porous polynorbornenes. A rational design was achieved in metathesis, addition, and CANAL polymers as an extension of the modular strategy using norbornene motifs as building blocks. Tuning the structure of norbornene-containing monomer units allowed obtaining high-free-volume polymers with apparent Brunauer–Emmett–Teller (BET) surface areas up to 1000 m2/g that made these materials promising for various engineering applications such as membrane gas separation, gas sorbents, CO2 capture, scaffolds to support catalysts, or reagents for catalysis. The synthesis and porous characteristics of polynorbornenes are presented along with the discussion of correlations between the chemical structure of these materials and their porous structures. Possible important applications of porous polynorbornenes are also emphasized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Reviews
Polymer Reviews 工程技术-高分子科学
CiteScore
24.80
自引率
0.80%
发文量
21
审稿时长
6 months
期刊介绍: Polymer Reviews is a reputable publication that focuses on timely issues within the field of macromolecular science and engineering. The journal features high-quality reviews that have been specifically curated by experts in the field. Topics of particular importance include biomedical applications, organic electronics and photonics, nanostructures, micro- and nano-fabrication, biological molecules (such as DNA, proteins, and carbohydrates), polymers for renewable energy and environmental applications, and interdisciplinary intersections involving polymers. The articles in Polymer Reviews fall into two main categories. Some articles offer comprehensive and expansive overviews of a particular subject, while others zero in on the author's own research and situate it within the broader scientific landscape. In both types of articles, the aim is to provide readers with valuable insights and advancements in the field of macromolecular science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信