离散量子态的纠缠和可分性准则

Miao Wang, Zhenfu Cao, Xiaolei Dong
{"title":"离散量子态的纠缠和可分性准则","authors":"Miao Wang, Zhenfu Cao, Xiaolei Dong","doi":"10.26421/qic23.7-8-1","DOIUrl":null,"url":null,"abstract":"Entanglement is an important quantum resource, which can be used in quantum teleportation and quantum computation. How to judge and measure entanglement or separability has become a basic problem in quantum information theory. In this paper, by analyzing the properties of generalized ring $\\mathbb{Z}[i]^{{2}^{n}}$, a new method is presented to judge the entanglement or separability of any quantum state in the discrete quantum computing model proposed by Gatti and Lacalle. Different from previous criteria based on matrices, it is relatively simple to operate in mathematical calculation. And if a quantum state is separable, it can calculate the separable mathematical expression. Taking $n=2,3$ as examples, the concrete forms of all separable states in the model are presented. It provides a new research perspective for the discrete quantum computing model.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"37 1","pages":"541-561"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Criteria for entanglement and separability of discrete quantum states\",\"authors\":\"Miao Wang, Zhenfu Cao, Xiaolei Dong\",\"doi\":\"10.26421/qic23.7-8-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Entanglement is an important quantum resource, which can be used in quantum teleportation and quantum computation. How to judge and measure entanglement or separability has become a basic problem in quantum information theory. In this paper, by analyzing the properties of generalized ring $\\\\mathbb{Z}[i]^{{2}^{n}}$, a new method is presented to judge the entanglement or separability of any quantum state in the discrete quantum computing model proposed by Gatti and Lacalle. Different from previous criteria based on matrices, it is relatively simple to operate in mathematical calculation. And if a quantum state is separable, it can calculate the separable mathematical expression. Taking $n=2,3$ as examples, the concrete forms of all separable states in the model are presented. It provides a new research perspective for the discrete quantum computing model.\",\"PeriodicalId\":20904,\"journal\":{\"name\":\"Quantum Inf. Comput.\",\"volume\":\"37 1\",\"pages\":\"541-561\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26421/qic23.7-8-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/qic23.7-8-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子纠缠是一种重要的量子资源,可用于量子隐形传态和量子计算。如何判断和测量量子的纠缠性或可分性已成为量子信息论中的一个基本问题。本文通过分析广义环$\mathbb{Z}[i]^{{2}^{n}}$的性质,提出了一种判断Gatti和Lacalle提出的离散量子计算模型中任意量子态的纠缠性或可分性的新方法。与以往基于矩阵的准则不同,它在数学计算中操作相对简单。如果一个量子态是可分离的,它可以计算出可分离的数学表达式。以$n=2,3$为例,给出了模型中所有可分离状态的具体形式。它为离散量子计算模型提供了一个新的研究视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Criteria for entanglement and separability of discrete quantum states
Entanglement is an important quantum resource, which can be used in quantum teleportation and quantum computation. How to judge and measure entanglement or separability has become a basic problem in quantum information theory. In this paper, by analyzing the properties of generalized ring $\mathbb{Z}[i]^{{2}^{n}}$, a new method is presented to judge the entanglement or separability of any quantum state in the discrete quantum computing model proposed by Gatti and Lacalle. Different from previous criteria based on matrices, it is relatively simple to operate in mathematical calculation. And if a quantum state is separable, it can calculate the separable mathematical expression. Taking $n=2,3$ as examples, the concrete forms of all separable states in the model are presented. It provides a new research perspective for the discrete quantum computing model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信