配对和比较数据中的非传递性建模

Shuo Chen, T. Joachims
{"title":"配对和比较数据中的非传递性建模","authors":"Shuo Chen, T. Joachims","doi":"10.1145/2835776.2835787","DOIUrl":null,"url":null,"abstract":"We present a method for learning potentially intransitive preference relations from pairwise comparison and matchup data. Unlike standard preference-learning models that represent the properties of each item/player as a single number, our method infers a multi-dimensional representation for the different aspects of each item/player's strength. We show that our model can represent any pairwise stochastic preference relation and provide a comprehensive evaluation of its predictive performance on a wide range of pairwise comparison tasks and matchup problems from online video games and sports, to peer grading and election. We find that several of these task -- especially matchups in online video games -- show substantial intransitivity that our method can model effectively.","PeriodicalId":20567,"journal":{"name":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":"{\"title\":\"Modeling Intransitivity in Matchup and Comparison Data\",\"authors\":\"Shuo Chen, T. Joachims\",\"doi\":\"10.1145/2835776.2835787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method for learning potentially intransitive preference relations from pairwise comparison and matchup data. Unlike standard preference-learning models that represent the properties of each item/player as a single number, our method infers a multi-dimensional representation for the different aspects of each item/player's strength. We show that our model can represent any pairwise stochastic preference relation and provide a comprehensive evaluation of its predictive performance on a wide range of pairwise comparison tasks and matchup problems from online video games and sports, to peer grading and election. We find that several of these task -- especially matchups in online video games -- show substantial intransitivity that our method can model effectively.\",\"PeriodicalId\":20567,\"journal\":{\"name\":\"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"74\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2835776.2835787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2835776.2835787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74

摘要

我们提出了一种从两两比较和配对数据中学习潜在不可传递偏好关系的方法。与将每个物品/玩家的属性表示为单个数字的标准偏好学习模型不同,我们的方法推断出每个物品/玩家力量的不同方面的多维表示。我们证明了我们的模型可以表示任何两两随机偏好关系,并对其在从在线视频游戏和体育到同伴评分和选举的广泛两两比较任务和配对问题上的预测性能提供了全面的评估。我们发现其中一些任务——尤其是在线视频游戏中的对局——显示出实质性的非及物性,我们的方法可以有效地建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Intransitivity in Matchup and Comparison Data
We present a method for learning potentially intransitive preference relations from pairwise comparison and matchup data. Unlike standard preference-learning models that represent the properties of each item/player as a single number, our method infers a multi-dimensional representation for the different aspects of each item/player's strength. We show that our model can represent any pairwise stochastic preference relation and provide a comprehensive evaluation of its predictive performance on a wide range of pairwise comparison tasks and matchup problems from online video games and sports, to peer grading and election. We find that several of these task -- especially matchups in online video games -- show substantial intransitivity that our method can model effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信