{"title":"交错堤岸可达性的快速图化简","authors":"Yuanbo Li, Qirun Zhang, T. Reps","doi":"10.1145/3385412.3386021","DOIUrl":null,"url":null,"abstract":"Many program-analysis problems can be formulated as graph-reachability problems. Interleaved Dyck language reachability. Interleaved Dyck language reachability (InterDyck-reachability) is a fundamental framework to express a wide variety of program-analysis problems over edge-labeled graphs. The InterDyck language represents an intersection of multiple matched-parenthesis languages (i.e., Dyck languages). In practice, program analyses typically leverage one Dyck language to achieve context-sensitivity, and other Dyck languages to model data dependences, such as field-sensitivity and pointer references/dereferences. In the ideal case, an InterDyck-reachability framework should model multiple Dyck languages simultaneously. Unfortunately, precise InterDyck-reachability is undecidable. Any practical solution must over-approximate the exact answer. In the literature, a lot of work has been proposed to over-approximate the InterDyck-reachability formulation. This paper offers a new perspective on improving both the precision and the scalability of InterDyck-reachability: we aim to simplify the underlying input graph G. Our key insight is based on the observation that if an edge is not contributing to any InterDyck-path, we can safely eliminate it from G. Our technique is orthogonal to the InterDyck-reachability formulation, and can serve as a pre-processing step with any over-approximating approaches for InterDyck-reachability. We have applied our graph simplification algorithm to pre-processing the graphs from a recent InterDyck-reachability-based taint analysis for Android. Our evaluation on three popular InterDyck-reachability algorithms yields promising results. In particular, our graph-simplification method improves both the scalability and precision of all three InterDyck-reachability algorithms, sometimes dramatically.","PeriodicalId":20580,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Fast graph simplification for interleaved Dyck-reachability\",\"authors\":\"Yuanbo Li, Qirun Zhang, T. Reps\",\"doi\":\"10.1145/3385412.3386021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many program-analysis problems can be formulated as graph-reachability problems. Interleaved Dyck language reachability. Interleaved Dyck language reachability (InterDyck-reachability) is a fundamental framework to express a wide variety of program-analysis problems over edge-labeled graphs. The InterDyck language represents an intersection of multiple matched-parenthesis languages (i.e., Dyck languages). In practice, program analyses typically leverage one Dyck language to achieve context-sensitivity, and other Dyck languages to model data dependences, such as field-sensitivity and pointer references/dereferences. In the ideal case, an InterDyck-reachability framework should model multiple Dyck languages simultaneously. Unfortunately, precise InterDyck-reachability is undecidable. Any practical solution must over-approximate the exact answer. In the literature, a lot of work has been proposed to over-approximate the InterDyck-reachability formulation. This paper offers a new perspective on improving both the precision and the scalability of InterDyck-reachability: we aim to simplify the underlying input graph G. Our key insight is based on the observation that if an edge is not contributing to any InterDyck-path, we can safely eliminate it from G. Our technique is orthogonal to the InterDyck-reachability formulation, and can serve as a pre-processing step with any over-approximating approaches for InterDyck-reachability. We have applied our graph simplification algorithm to pre-processing the graphs from a recent InterDyck-reachability-based taint analysis for Android. Our evaluation on three popular InterDyck-reachability algorithms yields promising results. In particular, our graph-simplification method improves both the scalability and precision of all three InterDyck-reachability algorithms, sometimes dramatically.\",\"PeriodicalId\":20580,\"journal\":{\"name\":\"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3385412.3386021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3385412.3386021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast graph simplification for interleaved Dyck-reachability
Many program-analysis problems can be formulated as graph-reachability problems. Interleaved Dyck language reachability. Interleaved Dyck language reachability (InterDyck-reachability) is a fundamental framework to express a wide variety of program-analysis problems over edge-labeled graphs. The InterDyck language represents an intersection of multiple matched-parenthesis languages (i.e., Dyck languages). In practice, program analyses typically leverage one Dyck language to achieve context-sensitivity, and other Dyck languages to model data dependences, such as field-sensitivity and pointer references/dereferences. In the ideal case, an InterDyck-reachability framework should model multiple Dyck languages simultaneously. Unfortunately, precise InterDyck-reachability is undecidable. Any practical solution must over-approximate the exact answer. In the literature, a lot of work has been proposed to over-approximate the InterDyck-reachability formulation. This paper offers a new perspective on improving both the precision and the scalability of InterDyck-reachability: we aim to simplify the underlying input graph G. Our key insight is based on the observation that if an edge is not contributing to any InterDyck-path, we can safely eliminate it from G. Our technique is orthogonal to the InterDyck-reachability formulation, and can serve as a pre-processing step with any over-approximating approaches for InterDyck-reachability. We have applied our graph simplification algorithm to pre-processing the graphs from a recent InterDyck-reachability-based taint analysis for Android. Our evaluation on three popular InterDyck-reachability algorithms yields promising results. In particular, our graph-simplification method improves both the scalability and precision of all three InterDyck-reachability algorithms, sometimes dramatically.