融合监督:面向深度显著目标检测器的无监督学习

Dingwen Zhang, Junwei Han, Yu Zhang
{"title":"融合监督:面向深度显著目标检测器的无监督学习","authors":"Dingwen Zhang, Junwei Han, Yu Zhang","doi":"10.1109/ICCV.2017.436","DOIUrl":null,"url":null,"abstract":"In light of the powerful learning capability of deep neural networks (DNNs), deep (convolutional) models have been built in recent years to address the task of salient object detection. Although training such deep saliency models can significantly improve the detection performance, it requires large-scale manual supervision in the form of pixel-level human annotation, which is highly labor-intensive and time-consuming. To address this problem, this paper makes the earliest effort to train a deep salient object detector without using any human annotation. The key insight is “supervision by fusion”, i.e., generating useful supervisory signals from the fusion process of weak but fast unsupervised saliency models. Based on this insight, we combine an intra-image fusion stream and a inter-image fusion stream in the proposed framework to generate the learning curriculum and pseudo ground-truth for supervising the training of the deep salient object detector. Comprehensive experiments on four benchmark datasets demonstrate that our method can approach the same network trained with full supervision (within 2-5% performance gap) and, more encouragingly, even outperform a number of fully supervised state-of-the-art approaches.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"54 1","pages":"4068-4076"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"144","resultStr":"{\"title\":\"Supervision by Fusion: Towards Unsupervised Learning of Deep Salient Object Detector\",\"authors\":\"Dingwen Zhang, Junwei Han, Yu Zhang\",\"doi\":\"10.1109/ICCV.2017.436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In light of the powerful learning capability of deep neural networks (DNNs), deep (convolutional) models have been built in recent years to address the task of salient object detection. Although training such deep saliency models can significantly improve the detection performance, it requires large-scale manual supervision in the form of pixel-level human annotation, which is highly labor-intensive and time-consuming. To address this problem, this paper makes the earliest effort to train a deep salient object detector without using any human annotation. The key insight is “supervision by fusion”, i.e., generating useful supervisory signals from the fusion process of weak but fast unsupervised saliency models. Based on this insight, we combine an intra-image fusion stream and a inter-image fusion stream in the proposed framework to generate the learning curriculum and pseudo ground-truth for supervising the training of the deep salient object detector. Comprehensive experiments on four benchmark datasets demonstrate that our method can approach the same network trained with full supervision (within 2-5% performance gap) and, more encouragingly, even outperform a number of fully supervised state-of-the-art approaches.\",\"PeriodicalId\":6559,\"journal\":{\"name\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"54 1\",\"pages\":\"4068-4076\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"144\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2017.436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 144

摘要

鉴于深度神经网络(dnn)强大的学习能力,近年来人们建立了深度(卷积)模型来解决显著目标检测的任务。虽然训练这种深度显著性模型可以显著提高检测性能,但它需要以像素级人工标注的形式进行大规模的人工监督,这是高度劳动密集型和耗时的。为了解决这个问题,本文最早尝试在不使用任何人工注释的情况下训练一个深度显著目标检测器。关键观点是“融合监督”,即从弱但快速的无监督显著性模型的融合过程中产生有用的监督信号。基于这一见解,我们在所提出的框架中结合图像内融合流和图像间融合流来生成学习课程和伪ground-truth,用于监督深度显著目标检测器的训练。在四个基准数据集上进行的综合实验表明,我们的方法可以接近经过完全监督训练的相同网络(在2-5%的性能差距内),更令人鼓舞的是,甚至优于许多完全监督的最先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supervision by Fusion: Towards Unsupervised Learning of Deep Salient Object Detector
In light of the powerful learning capability of deep neural networks (DNNs), deep (convolutional) models have been built in recent years to address the task of salient object detection. Although training such deep saliency models can significantly improve the detection performance, it requires large-scale manual supervision in the form of pixel-level human annotation, which is highly labor-intensive and time-consuming. To address this problem, this paper makes the earliest effort to train a deep salient object detector without using any human annotation. The key insight is “supervision by fusion”, i.e., generating useful supervisory signals from the fusion process of weak but fast unsupervised saliency models. Based on this insight, we combine an intra-image fusion stream and a inter-image fusion stream in the proposed framework to generate the learning curriculum and pseudo ground-truth for supervising the training of the deep salient object detector. Comprehensive experiments on four benchmark datasets demonstrate that our method can approach the same network trained with full supervision (within 2-5% performance gap) and, more encouragingly, even outperform a number of fully supervised state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信