S.H. Ashrafi Niaki, Jalal Sahebkar Farkhani, Zhe Chen, B. Bak‐Jensen, S. Hu
{"title":"海上风电场高压直流电缆系统故障定位的智能估计方法","authors":"S.H. Ashrafi Niaki, Jalal Sahebkar Farkhani, Zhe Chen, B. Bak‐Jensen, S. Hu","doi":"10.3390/wind3030021","DOIUrl":null,"url":null,"abstract":"Large and remote offshore wind farms (OWFs) usually use voltage source converter (VSC) systems to transmit electrical power to the main network. Submarine high-voltage direct current (HVDC) cables are commonly used as transmission links. As they are liable to insulation breakdown, fault location in the HVDC cables is a major issue in these systems. Exact fault location can significantly reduce the high cost of submarine HVDC cable repair in multi-terminal networks. In this paper, a novel method is presented to find the exact location of the DC faults. The fault location is calculated using extraction of new features from voltage signals of cables’ sheaths and a trained artificial neural network (ANN). The results obtained from a simulation of a three-terminal HVDC system in power systems computer-aided design (PSCAD) environment show that the maximum percentage error of the proposed method is less than 1%.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":"5 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Intelligent Method for Fault Location Estimation in HVDC Cable Systems Connected to Offshore Wind Farms\",\"authors\":\"S.H. Ashrafi Niaki, Jalal Sahebkar Farkhani, Zhe Chen, B. Bak‐Jensen, S. Hu\",\"doi\":\"10.3390/wind3030021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large and remote offshore wind farms (OWFs) usually use voltage source converter (VSC) systems to transmit electrical power to the main network. Submarine high-voltage direct current (HVDC) cables are commonly used as transmission links. As they are liable to insulation breakdown, fault location in the HVDC cables is a major issue in these systems. Exact fault location can significantly reduce the high cost of submarine HVDC cable repair in multi-terminal networks. In this paper, a novel method is presented to find the exact location of the DC faults. The fault location is calculated using extraction of new features from voltage signals of cables’ sheaths and a trained artificial neural network (ANN). The results obtained from a simulation of a three-terminal HVDC system in power systems computer-aided design (PSCAD) environment show that the maximum percentage error of the proposed method is less than 1%.\",\"PeriodicalId\":51210,\"journal\":{\"name\":\"Wind and Structures\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/wind3030021\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/wind3030021","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
An Intelligent Method for Fault Location Estimation in HVDC Cable Systems Connected to Offshore Wind Farms
Large and remote offshore wind farms (OWFs) usually use voltage source converter (VSC) systems to transmit electrical power to the main network. Submarine high-voltage direct current (HVDC) cables are commonly used as transmission links. As they are liable to insulation breakdown, fault location in the HVDC cables is a major issue in these systems. Exact fault location can significantly reduce the high cost of submarine HVDC cable repair in multi-terminal networks. In this paper, a novel method is presented to find the exact location of the DC faults. The fault location is calculated using extraction of new features from voltage signals of cables’ sheaths and a trained artificial neural network (ANN). The results obtained from a simulation of a three-terminal HVDC system in power systems computer-aided design (PSCAD) environment show that the maximum percentage error of the proposed method is less than 1%.
期刊介绍:
The WIND AND STRUCTURES, An International Journal, aims at: - Major publication channel for research in the general area of wind and structural engineering, - Wider distribution at more affordable subscription rates; - Faster reviewing and publication for manuscripts submitted.
The main theme of the Journal is the wind effects on structures. Areas covered by the journal include:
Wind loads and structural response,
Bluff-body aerodynamics,
Computational method,
Wind tunnel modeling,
Local wind environment,
Codes and regulations,
Wind effects on large scale structures.