基于ISFLA-SVM的转子不平衡故障分类方法

Lei You, Qiyi Han, Ying Liang, Jin Wang
{"title":"基于ISFLA-SVM的转子不平衡故障分类方法","authors":"Lei You, Qiyi Han, Ying Liang, Jin Wang","doi":"10.1117/12.2574445","DOIUrl":null,"url":null,"abstract":"In this paper, a classification method for rotor imbalance fault (RIF) using support vector machine (SVM) is proposed. It adopts an improved shuffled frog-leaping algorithm (ISFLA) to optimize the parameters of SVM. Given the nonuniformity and the defect of trapping into the local optimum solution of the initial population existed in SFLA, some improvement methods are presented in ISFLA-SVM. ISFLA employs random uniform design (RUD) to generate an initial population. Besides, the global optimum solution of the proposed method could be found by changing the updating strategy of Xw in the subgroup. The performance of these three classification algorithms, i.e., particle swarm optimization (PSO)-SVM, SFLA-SVM, and ISFLA-SVM are compared. Analysis results show that ISFLA-SVM has the highest recognition accuracy.","PeriodicalId":90079,"journal":{"name":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","volume":"88 1","pages":"115260B - 115260B-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A classification method for rotor imbalance fault with ISFLA-SVM\",\"authors\":\"Lei You, Qiyi Han, Ying Liang, Jin Wang\",\"doi\":\"10.1117/12.2574445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a classification method for rotor imbalance fault (RIF) using support vector machine (SVM) is proposed. It adopts an improved shuffled frog-leaping algorithm (ISFLA) to optimize the parameters of SVM. Given the nonuniformity and the defect of trapping into the local optimum solution of the initial population existed in SFLA, some improvement methods are presented in ISFLA-SVM. ISFLA employs random uniform design (RUD) to generate an initial population. Besides, the global optimum solution of the proposed method could be found by changing the updating strategy of Xw in the subgroup. The performance of these three classification algorithms, i.e., particle swarm optimization (PSO)-SVM, SFLA-SVM, and ISFLA-SVM are compared. Analysis results show that ISFLA-SVM has the highest recognition accuracy.\",\"PeriodicalId\":90079,\"journal\":{\"name\":\"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging\",\"volume\":\"88 1\",\"pages\":\"115260B - 115260B-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2574445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2574445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于支持向量机(SVM)的转子不平衡故障分类方法。采用改进的shuffle frog- jump算法(ISFLA)对支持向量机参数进行优化。针对SFLA- svm存在的初始种群不均匀性和陷入局部最优解的缺陷,提出了一些改进方法。ISFLA采用随机均匀设计(RUD)生成初始种群。此外,通过改变子群中Xw的更新策略,可以找到该方法的全局最优解。比较了粒子群优化(PSO)-SVM、SFLA-SVM和ISFLA-SVM三种分类算法的性能。分析结果表明,ISFLA-SVM具有最高的识别准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A classification method for rotor imbalance fault with ISFLA-SVM
In this paper, a classification method for rotor imbalance fault (RIF) using support vector machine (SVM) is proposed. It adopts an improved shuffled frog-leaping algorithm (ISFLA) to optimize the parameters of SVM. Given the nonuniformity and the defect of trapping into the local optimum solution of the initial population existed in SFLA, some improvement methods are presented in ISFLA-SVM. ISFLA employs random uniform design (RUD) to generate an initial population. Besides, the global optimum solution of the proposed method could be found by changing the updating strategy of Xw in the subgroup. The performance of these three classification algorithms, i.e., particle swarm optimization (PSO)-SVM, SFLA-SVM, and ISFLA-SVM are compared. Analysis results show that ISFLA-SVM has the highest recognition accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信