{"title":"基于区块链的智能城市自动控制系统的智能合约","authors":"N. Pradhan, A. Singh","doi":"10.3233/AIS-210601","DOIUrl":null,"url":null,"abstract":"Nowadays, smart applications are increasing day by day to improve the standard of living in smart cities. A modern-day smart city is characterized by the presence of numerous smart Information and Communication Technology (ICT)-enabled services such as automated healthcare, automatic building monitoring, home automation, smart parking, traffic management, data security, among others. Such cities employ multitudes of Internet of Things (IoT) devices to collect and share data between trusted users by means of a centralized intermediary for monitoring and control of the myriad automatic activities. However, a centralized intermediary is plagued by issues such as single point of failure, risk of data loss, man-in-the-middle attack, and so forth. Blockchain-based smart contracts for automated control in smart cities provide a decentralized and secure alternative. In this paper, an Ethereum based system design for decentralized applications in smart cities has been proposed that enables systems to share data without an intermediary between trusted and non-trusted stakeholders using Ethereum based self-executing contracts. Such contracts allow automated multi-step workflows for smart applications. Two use cases, have been considered namely smart healthcare and smart building monitoring, as proof of stake of the proposed Ethereum based contract. The performance of the proposed scheme for these use cases has been presented with Keccack 256 transaction hash, the total number of transactions, gas consumed by each contract. Such an attempt is a worthwhile addition to state of the art as evident from the results presented herein. The modeling simulation and analysis of hashing power shows that for hashing power greater than 55% the probability of double spending attack reaches to 42% maximum. So it is concluded that the probability of double spending increases with the increase of transaction values.","PeriodicalId":49316,"journal":{"name":"Journal of Ambient Intelligence and Smart Environments","volume":"2 2 1","pages":"253-267"},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Smart contracts for automated control system in Blockchain based smart cities\",\"authors\":\"N. Pradhan, A. Singh\",\"doi\":\"10.3233/AIS-210601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, smart applications are increasing day by day to improve the standard of living in smart cities. A modern-day smart city is characterized by the presence of numerous smart Information and Communication Technology (ICT)-enabled services such as automated healthcare, automatic building monitoring, home automation, smart parking, traffic management, data security, among others. Such cities employ multitudes of Internet of Things (IoT) devices to collect and share data between trusted users by means of a centralized intermediary for monitoring and control of the myriad automatic activities. However, a centralized intermediary is plagued by issues such as single point of failure, risk of data loss, man-in-the-middle attack, and so forth. Blockchain-based smart contracts for automated control in smart cities provide a decentralized and secure alternative. In this paper, an Ethereum based system design for decentralized applications in smart cities has been proposed that enables systems to share data without an intermediary between trusted and non-trusted stakeholders using Ethereum based self-executing contracts. Such contracts allow automated multi-step workflows for smart applications. Two use cases, have been considered namely smart healthcare and smart building monitoring, as proof of stake of the proposed Ethereum based contract. The performance of the proposed scheme for these use cases has been presented with Keccack 256 transaction hash, the total number of transactions, gas consumed by each contract. Such an attempt is a worthwhile addition to state of the art as evident from the results presented herein. The modeling simulation and analysis of hashing power shows that for hashing power greater than 55% the probability of double spending attack reaches to 42% maximum. So it is concluded that the probability of double spending increases with the increase of transaction values.\",\"PeriodicalId\":49316,\"journal\":{\"name\":\"Journal of Ambient Intelligence and Smart Environments\",\"volume\":\"2 2 1\",\"pages\":\"253-267\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ambient Intelligence and Smart Environments\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/AIS-210601\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Smart Environments","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/AIS-210601","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Smart contracts for automated control system in Blockchain based smart cities
Nowadays, smart applications are increasing day by day to improve the standard of living in smart cities. A modern-day smart city is characterized by the presence of numerous smart Information and Communication Technology (ICT)-enabled services such as automated healthcare, automatic building monitoring, home automation, smart parking, traffic management, data security, among others. Such cities employ multitudes of Internet of Things (IoT) devices to collect and share data between trusted users by means of a centralized intermediary for monitoring and control of the myriad automatic activities. However, a centralized intermediary is plagued by issues such as single point of failure, risk of data loss, man-in-the-middle attack, and so forth. Blockchain-based smart contracts for automated control in smart cities provide a decentralized and secure alternative. In this paper, an Ethereum based system design for decentralized applications in smart cities has been proposed that enables systems to share data without an intermediary between trusted and non-trusted stakeholders using Ethereum based self-executing contracts. Such contracts allow automated multi-step workflows for smart applications. Two use cases, have been considered namely smart healthcare and smart building monitoring, as proof of stake of the proposed Ethereum based contract. The performance of the proposed scheme for these use cases has been presented with Keccack 256 transaction hash, the total number of transactions, gas consumed by each contract. Such an attempt is a worthwhile addition to state of the art as evident from the results presented herein. The modeling simulation and analysis of hashing power shows that for hashing power greater than 55% the probability of double spending attack reaches to 42% maximum. So it is concluded that the probability of double spending increases with the increase of transaction values.
期刊介绍:
The Journal of Ambient Intelligence and Smart Environments (JAISE) serves as a forum to discuss the latest developments on Ambient Intelligence (AmI) and Smart Environments (SmE). Given the multi-disciplinary nature of the areas involved, the journal aims to promote participation from several different communities covering topics ranging from enabling technologies such as multi-modal sensing and vision processing, to algorithmic aspects in interpretive and reasoning domains, to application-oriented efforts in human-centered services, as well as contributions from the fields of robotics, networking, HCI, mobile, collaborative and pervasive computing. This diversity stems from the fact that smart environments can be defined with a variety of different characteristics based on the applications they serve, their interaction models with humans, the practical system design aspects, as well as the multi-faceted conceptual and algorithmic considerations that would enable them to operate seamlessly and unobtrusively. The Journal of Ambient Intelligence and Smart Environments will focus on both the technical and application aspects of these.