M. Kalinina, N. Y. Fedorenko, M. Rubina, D. Suslov, Y. Andozhskaya, L. N. Efimova, O. Shilova
{"title":"基于ZrO2-Y2O3-Al2O3体系的高多孔陶瓷材料-植入体对生命活性的影响","authors":"M. Kalinina, N. Y. Fedorenko, M. Rubina, D. Suslov, Y. Andozhskaya, L. N. Efimova, O. Shilova","doi":"10.30791/1028-978x-2022-7-25-34","DOIUrl":null,"url":null,"abstract":"Nanodispersed xerogels and powders (average size 9 nm) were obtained by co-precipitation of hydroxides in the ZrO2–Y2O3–Al2O3. Solid-state sintering of samples from the initial [(ZrO2)0,97(Y2O3)0,03]0,8(Al2O3)0,2 powder with pore-forming additives using a patented technology strong highly porous ceramics was produced. Dopplerography was used to assess the volume of blood flow in arterioles and capillaries on 150 and 250 days after implantation of the plates. Thus, microcirculatory Doppler sonography seems to be a promising intravital method for assessing blood flow in the plate location area and, possibly, inside the plate. It was found that ceramic plates based on zirconium dioxide, placed in the body of experimental animals, do not cause a negative reaction of the animal’s body. The results of studies under in vivo conditions suggest that the obtained bioceramic based on zirconium dioxide is promising for use as a material for endo-prosthetics.","PeriodicalId":20003,"journal":{"name":"Perspektivnye Materialy","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of high porous ceramic material-implant based on ZrO2–Y2O3–Al2O3 system on life activity\",\"authors\":\"M. Kalinina, N. Y. Fedorenko, M. Rubina, D. Suslov, Y. Andozhskaya, L. N. Efimova, O. Shilova\",\"doi\":\"10.30791/1028-978x-2022-7-25-34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanodispersed xerogels and powders (average size 9 nm) were obtained by co-precipitation of hydroxides in the ZrO2–Y2O3–Al2O3. Solid-state sintering of samples from the initial [(ZrO2)0,97(Y2O3)0,03]0,8(Al2O3)0,2 powder with pore-forming additives using a patented technology strong highly porous ceramics was produced. Dopplerography was used to assess the volume of blood flow in arterioles and capillaries on 150 and 250 days after implantation of the plates. Thus, microcirculatory Doppler sonography seems to be a promising intravital method for assessing blood flow in the plate location area and, possibly, inside the plate. It was found that ceramic plates based on zirconium dioxide, placed in the body of experimental animals, do not cause a negative reaction of the animal’s body. The results of studies under in vivo conditions suggest that the obtained bioceramic based on zirconium dioxide is promising for use as a material for endo-prosthetics.\",\"PeriodicalId\":20003,\"journal\":{\"name\":\"Perspektivnye Materialy\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Perspektivnye Materialy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30791/1028-978x-2022-7-25-34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Perspektivnye Materialy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30791/1028-978x-2022-7-25-34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of high porous ceramic material-implant based on ZrO2–Y2O3–Al2O3 system on life activity
Nanodispersed xerogels and powders (average size 9 nm) were obtained by co-precipitation of hydroxides in the ZrO2–Y2O3–Al2O3. Solid-state sintering of samples from the initial [(ZrO2)0,97(Y2O3)0,03]0,8(Al2O3)0,2 powder with pore-forming additives using a patented technology strong highly porous ceramics was produced. Dopplerography was used to assess the volume of blood flow in arterioles and capillaries on 150 and 250 days after implantation of the plates. Thus, microcirculatory Doppler sonography seems to be a promising intravital method for assessing blood flow in the plate location area and, possibly, inside the plate. It was found that ceramic plates based on zirconium dioxide, placed in the body of experimental animals, do not cause a negative reaction of the animal’s body. The results of studies under in vivo conditions suggest that the obtained bioceramic based on zirconium dioxide is promising for use as a material for endo-prosthetics.