受振荡系统约束的类氢原子的光谱表征

F. Iacob
{"title":"受振荡系统约束的类氢原子的光谱表征","authors":"F. Iacob","doi":"10.2478/s11534-014-0496-1","DOIUrl":null,"url":null,"abstract":"The spectral characterization of Coulomb systems confined by a homogeneous pseudo-Gaussian oscillator is investigated. This is done using the efficient computational method of generating functionals. Also, this method is used for the spectral characterization of homogeneous harmonic oscillator confinement, treated as a particular case of pseudo-Gaussian oscillator confinement. Finally, confinement by an impenetrable sphere of finite radius is considered by studying its conjugate effect along with a harmonic oscillator.","PeriodicalId":50985,"journal":{"name":"Central European Journal of Physics","volume":"12 1","pages":"628-636"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Spectral characterization of hydrogen-like atoms confined by oscillating systems\",\"authors\":\"F. Iacob\",\"doi\":\"10.2478/s11534-014-0496-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spectral characterization of Coulomb systems confined by a homogeneous pseudo-Gaussian oscillator is investigated. This is done using the efficient computational method of generating functionals. Also, this method is used for the spectral characterization of homogeneous harmonic oscillator confinement, treated as a particular case of pseudo-Gaussian oscillator confinement. Finally, confinement by an impenetrable sphere of finite radius is considered by studying its conjugate effect along with a harmonic oscillator.\",\"PeriodicalId\":50985,\"journal\":{\"name\":\"Central European Journal of Physics\",\"volume\":\"12 1\",\"pages\":\"628-636\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11534-014-0496-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11534-014-0496-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究了受均匀伪高斯振子约束的库仑系统的谱特性。这是使用生成函数的有效计算方法来完成的。同时,将此方法作为伪高斯振子约束的一个特例,用于均匀谐振子约束的谱表征。最后,通过研究有限半径不可穿透球与谐振子的共轭效应,考虑了有限半径不可穿透球的约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral characterization of hydrogen-like atoms confined by oscillating systems
The spectral characterization of Coulomb systems confined by a homogeneous pseudo-Gaussian oscillator is investigated. This is done using the efficient computational method of generating functionals. Also, this method is used for the spectral characterization of homogeneous harmonic oscillator confinement, treated as a particular case of pseudo-Gaussian oscillator confinement. Finally, confinement by an impenetrable sphere of finite radius is considered by studying its conjugate effect along with a harmonic oscillator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Central European Journal of Physics
Central European Journal of Physics 物理-物理:综合
自引率
0.00%
发文量
0
审稿时长
3.3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信