钢损的测定及变压器磁导体片厚的优化

Q3 Energy
S. Plotnikov
{"title":"钢损的测定及变压器磁导体片厚的优化","authors":"S. Plotnikov","doi":"10.21122/1029-7448-2022-65-1-115-126","DOIUrl":null,"url":null,"abstract":"Currently, transformer manufacturers are tasked with creating energy-efficient devices with a reduction of steel losses of up to 44 %. Appropriate theoretical developments are needed for its implementation. With a reduction of eddy-current losses, caused, for example, by reduction of decrease in the thickness of the magnetic conductor sheets, hysteresis losses simultaneously increase. A similar effect is caused by changing the size of the crystal grain of steel, thermomagnetic treatment and other technological impacts. In this regard, the exact determination of the components of total losses in steel is an urgent problem, the solution of which would minimize total losses. The article analyzes the expressions that determine the specific losses for eddy currents and hysteresis through the parameters of the magnetic circuit, and states that this technique is too complicated for engineering calculations. Since eddy current losses are proportional to the square of the frequency, and hysteresis losses are proportional to the frequency in the first degree, simple calculated expressions of eddy current and hysteresis losses have been obtained using the wattmetric method. Based on the fact that the dependence of the magnetization loss on the thickness of the magnetic conductor plates is a decreasing linear function, and the eddy current loss is an ascending parabolic function, an expression of the optimal thickness of the plates has been found, the implementation of which makes the losses of steel minimal. This information will make it possible to minimize total steel losses more effectively by varying the design parameters and the material of the magnetic conductor. It is shown that the charted idling losses of transformers manufactured by different manufacturers differ by more than 30 % and can be rounded and underestimated; therefore it is advisable to obtain this parameter as a result of an experiment (idling experiment).","PeriodicalId":52141,"journal":{"name":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Determination of Steel Losses and Optimization of the Thickness of the Transformer Magnetic Conductor Sheets\",\"authors\":\"S. Plotnikov\",\"doi\":\"10.21122/1029-7448-2022-65-1-115-126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, transformer manufacturers are tasked with creating energy-efficient devices with a reduction of steel losses of up to 44 %. Appropriate theoretical developments are needed for its implementation. With a reduction of eddy-current losses, caused, for example, by reduction of decrease in the thickness of the magnetic conductor sheets, hysteresis losses simultaneously increase. A similar effect is caused by changing the size of the crystal grain of steel, thermomagnetic treatment and other technological impacts. In this regard, the exact determination of the components of total losses in steel is an urgent problem, the solution of which would minimize total losses. The article analyzes the expressions that determine the specific losses for eddy currents and hysteresis through the parameters of the magnetic circuit, and states that this technique is too complicated for engineering calculations. Since eddy current losses are proportional to the square of the frequency, and hysteresis losses are proportional to the frequency in the first degree, simple calculated expressions of eddy current and hysteresis losses have been obtained using the wattmetric method. Based on the fact that the dependence of the magnetization loss on the thickness of the magnetic conductor plates is a decreasing linear function, and the eddy current loss is an ascending parabolic function, an expression of the optimal thickness of the plates has been found, the implementation of which makes the losses of steel minimal. This information will make it possible to minimize total steel losses more effectively by varying the design parameters and the material of the magnetic conductor. It is shown that the charted idling losses of transformers manufactured by different manufacturers differ by more than 30 % and can be rounded and underestimated; therefore it is advisable to obtain this parameter as a result of an experiment (idling experiment).\",\"PeriodicalId\":52141,\"journal\":{\"name\":\"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21122/1029-7448-2022-65-1-115-126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/1029-7448-2022-65-1-115-126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 1

摘要

目前,变压器制造商的任务是创造节能设备,减少高达44%的钢铁损耗。需要适当的理论发展来实施它。随着涡流损耗的减少,例如,由于磁性导体片厚度的减小而引起的涡流损耗减少,磁滞损耗同时增加。改变钢的晶粒尺寸、热磁处理和其他技术影响也会产生类似的效果。在这方面,准确确定钢铁总损失的组成部分是一个紧迫的问题,解决这个问题将使总损失最小化。分析了通过磁路参数确定涡流和磁滞比损耗的表达式,指出这种方法在工程计算上过于复杂。由于涡流损耗与频率的平方成正比,磁滞损耗与频率成一阶正比,利用瓦特法得到了涡流损耗和磁滞损耗的简单计算表达式。根据磁性导体板厚度与磁化损耗的关系是递减的线性函数,涡流损耗是上升的抛物线函数,得到了最佳板厚度的表达式,该表达式的实现使钢的损耗最小。这些信息将使通过改变设计参数和磁性导体的材料更有效地减少总钢损耗成为可能。结果表明,不同厂家生产的变压器空转损耗图相差30%以上,可以取整和低估;因此,建议通过实验(空转实验)获得该参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of Steel Losses and Optimization of the Thickness of the Transformer Magnetic Conductor Sheets
Currently, transformer manufacturers are tasked with creating energy-efficient devices with a reduction of steel losses of up to 44 %. Appropriate theoretical developments are needed for its implementation. With a reduction of eddy-current losses, caused, for example, by reduction of decrease in the thickness of the magnetic conductor sheets, hysteresis losses simultaneously increase. A similar effect is caused by changing the size of the crystal grain of steel, thermomagnetic treatment and other technological impacts. In this regard, the exact determination of the components of total losses in steel is an urgent problem, the solution of which would minimize total losses. The article analyzes the expressions that determine the specific losses for eddy currents and hysteresis through the parameters of the magnetic circuit, and states that this technique is too complicated for engineering calculations. Since eddy current losses are proportional to the square of the frequency, and hysteresis losses are proportional to the frequency in the first degree, simple calculated expressions of eddy current and hysteresis losses have been obtained using the wattmetric method. Based on the fact that the dependence of the magnetization loss on the thickness of the magnetic conductor plates is a decreasing linear function, and the eddy current loss is an ascending parabolic function, an expression of the optimal thickness of the plates has been found, the implementation of which makes the losses of steel minimal. This information will make it possible to minimize total steel losses more effectively by varying the design parameters and the material of the magnetic conductor. It is shown that the charted idling losses of transformers manufactured by different manufacturers differ by more than 30 % and can be rounded and underestimated; therefore it is advisable to obtain this parameter as a result of an experiment (idling experiment).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
32
审稿时长
8 weeks
期刊介绍: The most important objectives of the journal are the generalization of scientific and practical achievements in the field of power engineering, increase scientific and practical skills as researchers and industry representatives. Scientific concept publications include the publication of a modern national and international research and achievements in areas such as general energetic, electricity, thermal energy, construction, environmental issues energy, energy economy, etc. The journal publishes the results of basic research and the advanced achievements of practices aimed at improving the efficiency of the functioning of the energy sector, reduction of losses in electricity and heat networks, improving the reliability of electrical protection systems, the stability of the energetic complex, literature reviews on a wide range of energy issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信