使用无创手气味分析预测SARS-CoV-2变异:一项试点研究

Analytica Pub Date : 2023-05-22 DOI:10.3390/analytica4020016
Vidia A Gokool, Janet Crespo-Cajigas, A. Ramírez Torres, Liam Forsythe, Benjamin S. Abella, Howard K. Holness, A. T. C. Johnson, Richard Postrel, K. Furton
{"title":"使用无创手气味分析预测SARS-CoV-2变异:一项试点研究","authors":"Vidia A Gokool, Janet Crespo-Cajigas, A. Ramírez Torres, Liam Forsythe, Benjamin S. Abella, Howard K. Holness, A. T. C. Johnson, Richard Postrel, K. Furton","doi":"10.3390/analytica4020016","DOIUrl":null,"url":null,"abstract":"The adaptable nature of the SARS-CoV-2 virus has led to the emergence of multiple viral variants of concern. This research builds upon a previous demonstration of sampling human hand odor to distinguish SARS-CoV-2 infection status in order to incorporate considerations of the disease variants. This study demonstrates the ability of human odor expression to be implemented as a non-invasive medium for the differentiation of SARS-CoV-2 variants. Volatile organic compounds (VOCs) were extracted from SARS-CoV-2-positive samples using solid phase microextraction (SPME) coupled with gas chromatography–mass spectrometry (GC–MS). Sparse partial least squares discriminant analysis (sPLS-DA) modeling revealed that supervised machine learning could be used to predict the variant identity of a sample using VOC expression alone. The class discrimination of Delta and Omicron BA.5 variant samples was performed with 95.2% (±0.4) accuracy. Omicron BA.2 and Omicron BA.5 variants were correctly classified with 78.5% (±0.8) accuracy. Lastly, Delta and Omicron BA.2 samples were assigned with 71.2% (±1.0) accuracy. This work builds upon the framework of non-invasive techniques producing diagnostics through the analysis of human odor expression, all in support of public health monitoring.","PeriodicalId":7829,"journal":{"name":"Analytica","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting SARS-CoV-2 Variant Using Non-Invasive Hand Odor Analysis: A Pilot Study\",\"authors\":\"Vidia A Gokool, Janet Crespo-Cajigas, A. Ramírez Torres, Liam Forsythe, Benjamin S. Abella, Howard K. Holness, A. T. C. Johnson, Richard Postrel, K. Furton\",\"doi\":\"10.3390/analytica4020016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The adaptable nature of the SARS-CoV-2 virus has led to the emergence of multiple viral variants of concern. This research builds upon a previous demonstration of sampling human hand odor to distinguish SARS-CoV-2 infection status in order to incorporate considerations of the disease variants. This study demonstrates the ability of human odor expression to be implemented as a non-invasive medium for the differentiation of SARS-CoV-2 variants. Volatile organic compounds (VOCs) were extracted from SARS-CoV-2-positive samples using solid phase microextraction (SPME) coupled with gas chromatography–mass spectrometry (GC–MS). Sparse partial least squares discriminant analysis (sPLS-DA) modeling revealed that supervised machine learning could be used to predict the variant identity of a sample using VOC expression alone. The class discrimination of Delta and Omicron BA.5 variant samples was performed with 95.2% (±0.4) accuracy. Omicron BA.2 and Omicron BA.5 variants were correctly classified with 78.5% (±0.8) accuracy. Lastly, Delta and Omicron BA.2 samples were assigned with 71.2% (±1.0) accuracy. This work builds upon the framework of non-invasive techniques producing diagnostics through the analysis of human odor expression, all in support of public health monitoring.\",\"PeriodicalId\":7829,\"journal\":{\"name\":\"Analytica\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/analytica4020016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/analytica4020016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

SARS-CoV-2病毒的适应性导致了多种令人关注的病毒变体的出现。这项研究建立在先前的一项演示的基础上,该演示通过采样人手气味来区分SARS-CoV-2感染状态,以便纳入疾病变体的考虑。本研究证明了人类气味表达可以作为非侵入性培养基实现SARS-CoV-2变体的分化。采用固相微萃取(SPME) -气相色谱-质谱联用(GC-MS)技术从sars - cov -2阳性样品中提取挥发性有机化合物(VOCs)。稀疏偏最小二乘判别分析(sPLS-DA)模型表明,监督式机器学习可以仅使用VOC表达来预测样本的变异身份。Delta和Omicron BA.5变异样本的分类准确率为95.2%(±0.4)。Omicron BA.2和Omicron BA.5变异的正确分类准确率为78.5%(±0.8)。最后,Delta和Omicron BA.2样本的分配精度为71.2%(±1.0)。这项工作建立在非侵入性技术的框架上,通过分析人类气味表达来产生诊断,所有这些都是为了支持公共卫生监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting SARS-CoV-2 Variant Using Non-Invasive Hand Odor Analysis: A Pilot Study
The adaptable nature of the SARS-CoV-2 virus has led to the emergence of multiple viral variants of concern. This research builds upon a previous demonstration of sampling human hand odor to distinguish SARS-CoV-2 infection status in order to incorporate considerations of the disease variants. This study demonstrates the ability of human odor expression to be implemented as a non-invasive medium for the differentiation of SARS-CoV-2 variants. Volatile organic compounds (VOCs) were extracted from SARS-CoV-2-positive samples using solid phase microextraction (SPME) coupled with gas chromatography–mass spectrometry (GC–MS). Sparse partial least squares discriminant analysis (sPLS-DA) modeling revealed that supervised machine learning could be used to predict the variant identity of a sample using VOC expression alone. The class discrimination of Delta and Omicron BA.5 variant samples was performed with 95.2% (±0.4) accuracy. Omicron BA.2 and Omicron BA.5 variants were correctly classified with 78.5% (±0.8) accuracy. Lastly, Delta and Omicron BA.2 samples were assigned with 71.2% (±1.0) accuracy. This work builds upon the framework of non-invasive techniques producing diagnostics through the analysis of human odor expression, all in support of public health monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信