大型机工作负载的可视化探索

C. Schulz, Nils Rodrigues, Krishna Damarla, Andreas Henicke, D. Weiskopf
{"title":"大型机工作负载的可视化探索","authors":"C. Schulz, Nils Rodrigues, Krishna Damarla, Andreas Henicke, D. Weiskopf","doi":"10.1145/3139295.3139312","DOIUrl":null,"url":null,"abstract":"We present a visual analytics approach to support the workload management process for z/OS mainframes at IBM. This process typically requires the analysis of records consisting of 100 to 150 performance-related metrics, sampled over time. We aim at replacing the previous spreadsheet-based workflow with an easier, faster, and more scalable one regarding measurement periods and collected performance metrics. To achieve this goal, we collaborate with a developer embedded at IBM in a formative process. Based on that experience, we discuss the application background and formulate requirements to support decision making based on performance data for large-scale systems. Our visual approach helps analysts find outliers, patterns, and relations between performance metrics by data exploration through various visualizations. We demonstrate the usefulness and applicability of line plots, scatter plots, scatter plot matrices, parallel coordinates, and correlation matrices for workload management. Finally, we evaluate our approach in a qualitative user study with IBM domain experts.","PeriodicalId":92446,"journal":{"name":"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Visual exploration of mainframe workloads\",\"authors\":\"C. Schulz, Nils Rodrigues, Krishna Damarla, Andreas Henicke, D. Weiskopf\",\"doi\":\"10.1145/3139295.3139312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a visual analytics approach to support the workload management process for z/OS mainframes at IBM. This process typically requires the analysis of records consisting of 100 to 150 performance-related metrics, sampled over time. We aim at replacing the previous spreadsheet-based workflow with an easier, faster, and more scalable one regarding measurement periods and collected performance metrics. To achieve this goal, we collaborate with a developer embedded at IBM in a formative process. Based on that experience, we discuss the application background and formulate requirements to support decision making based on performance data for large-scale systems. Our visual approach helps analysts find outliers, patterns, and relations between performance metrics by data exploration through various visualizations. We demonstrate the usefulness and applicability of line plots, scatter plots, scatter plot matrices, parallel coordinates, and correlation matrices for workload management. Finally, we evaluate our approach in a qualitative user study with IBM domain experts.\",\"PeriodicalId\":92446,\"journal\":{\"name\":\"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3139295.3139312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3139295.3139312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种可视化分析方法来支持IBM z/OS大型机的工作负载管理过程。此过程通常需要分析由100到150个性能相关指标组成的记录,并随时间采样。我们的目标是用一个更简单、更快、更可扩展的关于度量周期和收集的性能指标的工作流来取代以前基于电子表格的工作流。为了实现这一目标,我们在形成过程中与嵌入IBM的开发人员合作。基于这些经验,我们讨论了应用背景和制定需求,以支持基于大型系统性能数据的决策。我们的可视化方法通过各种可视化的数据探索,帮助分析人员发现异常值、模式和性能指标之间的关系。我们演示了线形图、散点图、散点图矩阵、平行坐标和相关矩阵在工作负载管理中的实用性和适用性。最后,我们在IBM领域专家的定性用户研究中评估了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual exploration of mainframe workloads
We present a visual analytics approach to support the workload management process for z/OS mainframes at IBM. This process typically requires the analysis of records consisting of 100 to 150 performance-related metrics, sampled over time. We aim at replacing the previous spreadsheet-based workflow with an easier, faster, and more scalable one regarding measurement periods and collected performance metrics. To achieve this goal, we collaborate with a developer embedded at IBM in a formative process. Based on that experience, we discuss the application background and formulate requirements to support decision making based on performance data for large-scale systems. Our visual approach helps analysts find outliers, patterns, and relations between performance metrics by data exploration through various visualizations. We demonstrate the usefulness and applicability of line plots, scatter plots, scatter plot matrices, parallel coordinates, and correlation matrices for workload management. Finally, we evaluate our approach in a qualitative user study with IBM domain experts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信