{"title":"周期随机规划的对偶界","authors":"A. Shapiro, Yi Cheng","doi":"10.1287/opre.2021.2245","DOIUrl":null,"url":null,"abstract":"A construction of the dual of a periodical formulation of infinite-horizon linear stochastic programs with a discount factor is discussed. The dual problem is used for computing a deterministic upper bound for the optimal value of the considered multistage stochastic program. Numerical experiments demonstrate behavior of that upper bound, especially when the discount factor is close to one.","PeriodicalId":19546,"journal":{"name":"Oper. Res.","volume":"49 1","pages":"120-128"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Dual Bounds for Periodical Stochastic Programs\",\"authors\":\"A. Shapiro, Yi Cheng\",\"doi\":\"10.1287/opre.2021.2245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A construction of the dual of a periodical formulation of infinite-horizon linear stochastic programs with a discount factor is discussed. The dual problem is used for computing a deterministic upper bound for the optimal value of the considered multistage stochastic program. Numerical experiments demonstrate behavior of that upper bound, especially when the discount factor is close to one.\",\"PeriodicalId\":19546,\"journal\":{\"name\":\"Oper. Res.\",\"volume\":\"49 1\",\"pages\":\"120-128\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/opre.2021.2245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/opre.2021.2245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A construction of the dual of a periodical formulation of infinite-horizon linear stochastic programs with a discount factor is discussed. The dual problem is used for computing a deterministic upper bound for the optimal value of the considered multistage stochastic program. Numerical experiments demonstrate behavior of that upper bound, especially when the discount factor is close to one.