空位对实际拓扑绝缘体纳米带电子输运性质的无序影响:以铋为例

A. Pezo, B. Focassio, G. R. Schleder, M. Costa, C. Lewenkopf, A. Fazzio
{"title":"空位对实际拓扑绝缘体纳米带电子输运性质的无序影响:以铋为例","authors":"A. Pezo, B. Focassio, G. R. Schleder, M. Costa, C. Lewenkopf, A. Fazzio","doi":"10.1103/PHYSREVMATERIALS.5.014204","DOIUrl":null,"url":null,"abstract":"The robustness of topological materials against disorder and defects is presumed but has not been demonstrated explicitly in realistic systems. In this work, we use state-of-the-art density functional theory and recursive nonequilibrium Green's functions methods to study the effect of disorder in the electronic transport of long nanoribbons, up to 157 nm, as a function of vacancy concentration. In narrow nanoribbons, even for small vacancy concentrations, defect-like localized states give rise to hybridization between the edge states erasing topological protection and enabling backscattering events. We show that the topological protection is more robust for wide nanoribbons, but surprisingly it breaks down at moderate structural disorder. Our study helps to establish some bounds on defective bismuthene nanoribbons as promising candidates for spintronic applications.","PeriodicalId":8465,"journal":{"name":"arXiv: Mesoscale and Nanoscale Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Disorder effects of vacancies on the electronic transport properties of realistic topological insulator nanoribbons: The case of bismuthene\",\"authors\":\"A. Pezo, B. Focassio, G. R. Schleder, M. Costa, C. Lewenkopf, A. Fazzio\",\"doi\":\"10.1103/PHYSREVMATERIALS.5.014204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The robustness of topological materials against disorder and defects is presumed but has not been demonstrated explicitly in realistic systems. In this work, we use state-of-the-art density functional theory and recursive nonequilibrium Green's functions methods to study the effect of disorder in the electronic transport of long nanoribbons, up to 157 nm, as a function of vacancy concentration. In narrow nanoribbons, even for small vacancy concentrations, defect-like localized states give rise to hybridization between the edge states erasing topological protection and enabling backscattering events. We show that the topological protection is more robust for wide nanoribbons, but surprisingly it breaks down at moderate structural disorder. Our study helps to establish some bounds on defective bismuthene nanoribbons as promising candidates for spintronic applications.\",\"PeriodicalId\":8465,\"journal\":{\"name\":\"arXiv: Mesoscale and Nanoscale Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mesoscale and Nanoscale Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVMATERIALS.5.014204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVMATERIALS.5.014204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

拓扑材料对无序和缺陷的鲁棒性是假定的,但尚未在现实系统中得到明确的证明。在这项工作中,我们使用最先进的密度泛函理论和递归非平衡格林函数方法研究了长纳米带(高达157 nm)电子输运中无序作为空位浓度的函数的影响。在狭窄的纳米带中,即使空位浓度很小,缺陷类局域态也会导致边缘态之间的杂化,从而消除拓扑保护并使后向散射事件成为可能。我们发现拓扑保护对于宽的纳米带是更稳健的,但令人惊讶的是,它在适度的结构紊乱时破坏。我们的研究有助于建立缺陷铋纳米带作为自旋电子应用的有希望的候选者的一些界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disorder effects of vacancies on the electronic transport properties of realistic topological insulator nanoribbons: The case of bismuthene
The robustness of topological materials against disorder and defects is presumed but has not been demonstrated explicitly in realistic systems. In this work, we use state-of-the-art density functional theory and recursive nonequilibrium Green's functions methods to study the effect of disorder in the electronic transport of long nanoribbons, up to 157 nm, as a function of vacancy concentration. In narrow nanoribbons, even for small vacancy concentrations, defect-like localized states give rise to hybridization between the edge states erasing topological protection and enabling backscattering events. We show that the topological protection is more robust for wide nanoribbons, but surprisingly it breaks down at moderate structural disorder. Our study helps to establish some bounds on defective bismuthene nanoribbons as promising candidates for spintronic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信