使用自动微分训练大型前馈神经网络的正则化工具*

IF 1.4 3区 数学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
J. Eriksson, M. Gulliksson, Per Lindström, P. Wedin
{"title":"使用自动微分训练大型前馈神经网络的正则化工具*","authors":"J. Eriksson, M. Gulliksson, Per Lindström, P. Wedin","doi":"10.1080/10556789808805701","DOIUrl":null,"url":null,"abstract":"We describe regularization tools for training large-scale artificial feed-forward neural networks. We propose algorithms that explicitly use a sequence of Tikhonov regularized nonlinear least squar ...","PeriodicalId":54673,"journal":{"name":"Optimization Methods & Software","volume":"1 1","pages":"49-69"},"PeriodicalIF":1.4000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Regularization tools for training large feed-forward neural networks using automatic differentiation ∗\",\"authors\":\"J. Eriksson, M. Gulliksson, Per Lindström, P. Wedin\",\"doi\":\"10.1080/10556789808805701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe regularization tools for training large-scale artificial feed-forward neural networks. We propose algorithms that explicitly use a sequence of Tikhonov regularized nonlinear least squar ...\",\"PeriodicalId\":54673,\"journal\":{\"name\":\"Optimization Methods & Software\",\"volume\":\"1 1\",\"pages\":\"49-69\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods & Software\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10556789808805701\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods & Software","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10556789808805701","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 12

摘要

我们描述了用于训练大规模人工前馈神经网络的正则化工具。我们提出了一种明确地使用Tikhonov正则化非线性最小二乘序列的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularization tools for training large feed-forward neural networks using automatic differentiation ∗
We describe regularization tools for training large-scale artificial feed-forward neural networks. We propose algorithms that explicitly use a sequence of Tikhonov regularized nonlinear least squar ...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optimization Methods & Software
Optimization Methods & Software 工程技术-计算机:软件工程
CiteScore
4.50
自引率
0.00%
发文量
40
审稿时长
7 months
期刊介绍: Optimization Methods and Software publishes refereed papers on the latest developments in the theory and realization of optimization methods, with particular emphasis on the interface between software development and algorithm design. Topics include: Theory, implementation and performance evaluation of algorithms and computer codes for linear, nonlinear, discrete, stochastic optimization and optimal control. This includes in particular conic, semi-definite, mixed integer, network, non-smooth, multi-objective and global optimization by deterministic or nondeterministic algorithms. Algorithms and software for complementarity, variational inequalities and equilibrium problems, and also for solving inverse problems, systems of nonlinear equations and the numerical study of parameter dependent operators. Various aspects of efficient and user-friendly implementations: e.g. automatic differentiation, massively parallel optimization, distributed computing, on-line algorithms, error sensitivity and validity analysis, problem scaling, stopping criteria and symbolic numeric interfaces. Theoretical studies with clear potential for applications and successful applications of specially adapted optimization methods and software to fields like engineering, machine learning, data mining, economics, finance, biology, or medicine. These submissions should not consist solely of the straightforward use of standard optimization techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信