父本长期补充叶酸可诱导鸡获得性发育和代谢变化的跨代遗传

Shengru Wu, W. Guo, Xinyi Li, Yanli Liu, Yulong Li, Xinyu Lei, Junhu Yao, Xiaojun Yang
{"title":"父本长期补充叶酸可诱导鸡获得性发育和代谢变化的跨代遗传","authors":"Shengru Wu, W. Guo, Xinyi Li, Yanli Liu, Yulong Li, Xinyu Lei, Junhu Yao, Xiaojun Yang","doi":"10.1098/rspb.2019.1653","DOIUrl":null,"url":null,"abstract":"Increasing evidence indicates that paternal diet can result in metabolic changes in offspring, but the definite mechanism remains unclear in birds. Here, we fed breeder cocks five different diets containing 0, 0.25, 1.25, 2.50 and 5.00 mg kg−1 folate throughout life. Paternal folate supplementation (FS) was beneficial to the growth and organ development of broiler offspring. Most importantly, the lipid and glucose metabolism of breeder cocks and broiler offspring were affected by paternal FS, according to biochemical and metabolomic analyses. We further employed global analyses of hepatic and spermatozoal messenger RNA (mRNA), long non-coding RNA (lncRNA) and micro RNA (miRNA). Some key genes involved in the glycolysis or gluconeogenesis pathway and the PPAR signalling pathway, including PEPCK, ANGPTL4 and THRSP, were regulated by differentially expressed hepatic and spermatozoal miRNAs and lncRNAs in breeder cocks and broiler offspring. Moreover, the expression of ANGPTL4 could also be regulated by differentially expressed miRNAs and lncRNAs in spermatozoa via competitive endogenous RNA (ceRNA) mechanisms. Overall, this model suggests that paternal folate could transgenerationally regulate lipid and glucose metabolism in broiler offspring and the epigenetic transmission may involve altered spermatozoal miRNAs and lncRNAs.","PeriodicalId":20609,"journal":{"name":"Proceedings of the Royal Society B","volume":"85 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Paternal chronic folate supplementation induced the transgenerational inheritance of acquired developmental and metabolic changes in chickens\",\"authors\":\"Shengru Wu, W. Guo, Xinyi Li, Yanli Liu, Yulong Li, Xinyu Lei, Junhu Yao, Xiaojun Yang\",\"doi\":\"10.1098/rspb.2019.1653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing evidence indicates that paternal diet can result in metabolic changes in offspring, but the definite mechanism remains unclear in birds. Here, we fed breeder cocks five different diets containing 0, 0.25, 1.25, 2.50 and 5.00 mg kg−1 folate throughout life. Paternal folate supplementation (FS) was beneficial to the growth and organ development of broiler offspring. Most importantly, the lipid and glucose metabolism of breeder cocks and broiler offspring were affected by paternal FS, according to biochemical and metabolomic analyses. We further employed global analyses of hepatic and spermatozoal messenger RNA (mRNA), long non-coding RNA (lncRNA) and micro RNA (miRNA). Some key genes involved in the glycolysis or gluconeogenesis pathway and the PPAR signalling pathway, including PEPCK, ANGPTL4 and THRSP, were regulated by differentially expressed hepatic and spermatozoal miRNAs and lncRNAs in breeder cocks and broiler offspring. Moreover, the expression of ANGPTL4 could also be regulated by differentially expressed miRNAs and lncRNAs in spermatozoa via competitive endogenous RNA (ceRNA) mechanisms. Overall, this model suggests that paternal folate could transgenerationally regulate lipid and glucose metabolism in broiler offspring and the epigenetic transmission may involve altered spermatozoal miRNAs and lncRNAs.\",\"PeriodicalId\":20609,\"journal\":{\"name\":\"Proceedings of the Royal Society B\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rspb.2019.1653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspb.2019.1653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

越来越多的证据表明,父亲的饮食可以导致后代的代谢变化,但在鸟类中明确的机制尚不清楚。在本研究中,我们终生给种鸡饲喂5种不同的饲粮,分别含有0、0.25、1.25、2.50和5.00 mg kg - 1叶酸。父本补充叶酸(FS)有利于肉鸡子代的生长和器官发育。最重要的是,根据生化和代谢组学分析,父亲FS对种鸡和肉鸡后代的脂质和葡萄糖代谢有影响。我们进一步对肝脏和精子的信使RNA (mRNA)、长链非编码RNA (lncRNA)和微RNA (miRNA)进行了全局分析。在种鸡和肉鸡后代中,参与糖酵解或糖异生途径和PPAR信号通路的关键基因,包括PEPCK、ANGPTL4和THRSP,受到肝脏和精子mirna和lncrna差异表达的调控。此外,ANGPTL4的表达也可以通过竞争内源性RNA (ceRNA)机制受到精子中差异表达的mirna和lncrna的调控。综上所述,该模型表明,父本叶酸可以跨代调节肉鸡后代的脂质和糖代谢,其表观遗传传递可能涉及精子mirna和lncrna的改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Paternal chronic folate supplementation induced the transgenerational inheritance of acquired developmental and metabolic changes in chickens
Increasing evidence indicates that paternal diet can result in metabolic changes in offspring, but the definite mechanism remains unclear in birds. Here, we fed breeder cocks five different diets containing 0, 0.25, 1.25, 2.50 and 5.00 mg kg−1 folate throughout life. Paternal folate supplementation (FS) was beneficial to the growth and organ development of broiler offspring. Most importantly, the lipid and glucose metabolism of breeder cocks and broiler offspring were affected by paternal FS, according to biochemical and metabolomic analyses. We further employed global analyses of hepatic and spermatozoal messenger RNA (mRNA), long non-coding RNA (lncRNA) and micro RNA (miRNA). Some key genes involved in the glycolysis or gluconeogenesis pathway and the PPAR signalling pathway, including PEPCK, ANGPTL4 and THRSP, were regulated by differentially expressed hepatic and spermatozoal miRNAs and lncRNAs in breeder cocks and broiler offspring. Moreover, the expression of ANGPTL4 could also be regulated by differentially expressed miRNAs and lncRNAs in spermatozoa via competitive endogenous RNA (ceRNA) mechanisms. Overall, this model suggests that paternal folate could transgenerationally regulate lipid and glucose metabolism in broiler offspring and the epigenetic transmission may involve altered spermatozoal miRNAs and lncRNAs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信