{"title":"Pufferfish:用于数据密集型应用程序的容器驱动弹性内存管理","authors":"Wei Chen, Aidi Pi, Shaoqi Wang, Xiaobo Zhou","doi":"10.1145/3357223.3362730","DOIUrl":null,"url":null,"abstract":"Data-intensive applications often suffer from significant memory pressure, resulting in excessive garbage collection (GC) and out-of-memory (OOM) errors, harming system performance and reliability. In this paper, we demonstrate how lightweight virtualization via OS containers opens up opportunities to address memory pressure and realize memory elasticity: 1) tasks running in a container can be set to a large heap size to avoid OutOfMemory (OOM) errors, and 2) tasks that are under memory pressure and incur significant swapping activities can be temporarily \"suspended\" by depriving resources from the hosting containers, and be \"resumed\" when resources are available. We propose and develop Pufferfish, an elastic memory manager, that leverages containers to flexibly allocate memory for tasks. Memory elasticity achieved by Pufferfish can be exploited by a cluster scheduler to improve cluster utilization and task parallelism. We implement Pufferfish on the cluster scheduler Apache Yarn. Experiments with Spark and MapReduce on real-world traces show Pufferfish is able to avoid OOM errors, improve cluster memory utilization by 2.7x and the median job runtime by 5.5x compared to a memory over-provisioning solution.","PeriodicalId":91949,"journal":{"name":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Pufferfish: Container-driven Elastic Memory Management for Data-intensive Applications\",\"authors\":\"Wei Chen, Aidi Pi, Shaoqi Wang, Xiaobo Zhou\",\"doi\":\"10.1145/3357223.3362730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data-intensive applications often suffer from significant memory pressure, resulting in excessive garbage collection (GC) and out-of-memory (OOM) errors, harming system performance and reliability. In this paper, we demonstrate how lightweight virtualization via OS containers opens up opportunities to address memory pressure and realize memory elasticity: 1) tasks running in a container can be set to a large heap size to avoid OutOfMemory (OOM) errors, and 2) tasks that are under memory pressure and incur significant swapping activities can be temporarily \\\"suspended\\\" by depriving resources from the hosting containers, and be \\\"resumed\\\" when resources are available. We propose and develop Pufferfish, an elastic memory manager, that leverages containers to flexibly allocate memory for tasks. Memory elasticity achieved by Pufferfish can be exploited by a cluster scheduler to improve cluster utilization and task parallelism. We implement Pufferfish on the cluster scheduler Apache Yarn. Experiments with Spark and MapReduce on real-world traces show Pufferfish is able to avoid OOM errors, improve cluster memory utilization by 2.7x and the median job runtime by 5.5x compared to a memory over-provisioning solution.\",\"PeriodicalId\":91949,\"journal\":{\"name\":\"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3357223.3362730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3357223.3362730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pufferfish: Container-driven Elastic Memory Management for Data-intensive Applications
Data-intensive applications often suffer from significant memory pressure, resulting in excessive garbage collection (GC) and out-of-memory (OOM) errors, harming system performance and reliability. In this paper, we demonstrate how lightweight virtualization via OS containers opens up opportunities to address memory pressure and realize memory elasticity: 1) tasks running in a container can be set to a large heap size to avoid OutOfMemory (OOM) errors, and 2) tasks that are under memory pressure and incur significant swapping activities can be temporarily "suspended" by depriving resources from the hosting containers, and be "resumed" when resources are available. We propose and develop Pufferfish, an elastic memory manager, that leverages containers to flexibly allocate memory for tasks. Memory elasticity achieved by Pufferfish can be exploited by a cluster scheduler to improve cluster utilization and task parallelism. We implement Pufferfish on the cluster scheduler Apache Yarn. Experiments with Spark and MapReduce on real-world traces show Pufferfish is able to avoid OOM errors, improve cluster memory utilization by 2.7x and the median job runtime by 5.5x compared to a memory over-provisioning solution.