有限广义四边形中的支配集

Tamás Héger, Lisa Hernandez Lucas
{"title":"有限广义四边形中的支配集","authors":"Tamás Héger, Lisa Hernandez Lucas","doi":"10.26493/1855-3974.2106.423","DOIUrl":null,"url":null,"abstract":"A dominating set in a graph is a set of vertices such that each vertex not in the set has a neighbor in the set. The domination number is the smallest size of a dominating set. We consider this problem in the incidence graph of a generalized quadrangle. We show that the domination number of a generalized quadrangle with parameters s and t is at most 2 s t  + 1 , and we prove that this bound is sharp if s  =  t or if s  =  q  − 1 and t  =  q  + 1 . Moreover, we give a complete classification of smallest dominating sets in generalized quadrangles where s  =  t , and give some general results for small dominating sets in the general case.","PeriodicalId":8402,"journal":{"name":"Ars Math. Contemp.","volume":"43 1","pages":"61-76"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dominating sets in finite generalized quadrangles\",\"authors\":\"Tamás Héger, Lisa Hernandez Lucas\",\"doi\":\"10.26493/1855-3974.2106.423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A dominating set in a graph is a set of vertices such that each vertex not in the set has a neighbor in the set. The domination number is the smallest size of a dominating set. We consider this problem in the incidence graph of a generalized quadrangle. We show that the domination number of a generalized quadrangle with parameters s and t is at most 2 s t  + 1 , and we prove that this bound is sharp if s  =  t or if s  =  q  − 1 and t  =  q  + 1 . Moreover, we give a complete classification of smallest dominating sets in generalized quadrangles where s  =  t , and give some general results for small dominating sets in the general case.\",\"PeriodicalId\":8402,\"journal\":{\"name\":\"Ars Math. Contemp.\",\"volume\":\"43 1\",\"pages\":\"61-76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ars Math. Contemp.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/1855-3974.2106.423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Math. Contemp.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/1855-3974.2106.423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

图中的支配集是顶点的集合,使得不在集合中的每个顶点在集合中都有一个邻居。支配数是支配集的最小大小。我们在广义四边形的关联图中考虑这个问题。证明了具有参数s和t的广义四边形的支配数不超过2 st + 1,并证明了当s = t或s = q−1和t = q + 1时,这个界是尖锐的。此外,我们给出了s = t的广义四边形中最小支配集的一个完全分类,并给出了一般情况下小支配集的一些一般结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dominating sets in finite generalized quadrangles
A dominating set in a graph is a set of vertices such that each vertex not in the set has a neighbor in the set. The domination number is the smallest size of a dominating set. We consider this problem in the incidence graph of a generalized quadrangle. We show that the domination number of a generalized quadrangle with parameters s and t is at most 2 s t  + 1 , and we prove that this bound is sharp if s  =  t or if s  =  q  − 1 and t  =  q  + 1 . Moreover, we give a complete classification of smallest dominating sets in generalized quadrangles where s  =  t , and give some general results for small dominating sets in the general case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信