矩阵方程在深度学习中分辨率为m个数据有n个参数

Tshibengabu Tshimanga Yannick, Mbuyi Mukendi Eugène, Batubenga Mwamba-nzambi Jean-Didier
{"title":"矩阵方程在深度学习中分辨率为m个数据有n个参数","authors":"Tshibengabu Tshimanga Yannick, Mbuyi Mukendi Eugène, Batubenga Mwamba-nzambi Jean-Didier","doi":"10.46565/jreas.202274400-403","DOIUrl":null,"url":null,"abstract":"This article on the vectorization of learning equations by neural network aims to give the matrix equations on [1-3]: first on the Z [8, 9] model of the perceptron[6] which calculates the inputs X, the Weights W and the bias, second on the quantization function [10] [11], called loss function [6, 7] [8]. and finally thegradient descent algorithm for maximizing likelihood and minimizing Z errors [4, 5].","PeriodicalId":14343,"journal":{"name":"International Journal of Research in Engineering and Applied Sciences","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MATRIX EQUATIONS IN DEEP LEARNING RESOLUTION FOR M DATA HAS N PARAMETERS\",\"authors\":\"Tshibengabu Tshimanga Yannick, Mbuyi Mukendi Eugène, Batubenga Mwamba-nzambi Jean-Didier\",\"doi\":\"10.46565/jreas.202274400-403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article on the vectorization of learning equations by neural network aims to give the matrix equations on [1-3]: first on the Z [8, 9] model of the perceptron[6] which calculates the inputs X, the Weights W and the bias, second on the quantization function [10] [11], called loss function [6, 7] [8]. and finally thegradient descent algorithm for maximizing likelihood and minimizing Z errors [4, 5].\",\"PeriodicalId\":14343,\"journal\":{\"name\":\"International Journal of Research in Engineering and Applied Sciences\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Research in Engineering and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46565/jreas.202274400-403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Research in Engineering and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46565/jreas.202274400-403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文通过神经网络对学习方程进行向量化,旨在给出[1-3]上的矩阵方程:首先是感知机[6]的Z[8,9]模型,该模型计算输入X、权重W和偏置,其次是量化函数[10][11],称为损失函数[6,7][8]。最后是最大化似然和最小化Z误差的梯度下降算法[4,5]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MATRIX EQUATIONS IN DEEP LEARNING RESOLUTION FOR M DATA HAS N PARAMETERS
This article on the vectorization of learning equations by neural network aims to give the matrix equations on [1-3]: first on the Z [8, 9] model of the perceptron[6] which calculates the inputs X, the Weights W and the bias, second on the quantization function [10] [11], called loss function [6, 7] [8]. and finally thegradient descent algorithm for maximizing likelihood and minimizing Z errors [4, 5].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信