{"title":"热水预处理和酶解对棕榈仁饼木质纤维素含量解聚的协同作用","authors":"Shuofu Mi , Hongqiang Li , Shuying Li , Yejun Han","doi":"10.1016/j.molcatb.2016.09.004","DOIUrl":null,"url":null,"abstract":"<div><p>Palm kernel cake (PKC), mainly composed of mannan, lignin and protein, is abundant renewable resource with commercial value. To develop clean and efficient way for PKC refinery, the method based on the synergism of hot water pretreatment (HWP), steam pretreatment (SP) and enzymatic hydrolysis were developed. HWP of 180<!--> <!-->°C, 20<!--> <!-->min and SP of 121<!--> <!-->°C, 20<!--> <!-->min showed similar performance for sugar release from PKC. The main saccharides produced from PKC by HWP and SP were mannose and manno-oligosaccharides, while no furfural formed. The surface structure analyzed by SEM showed that HWP enhanced the microporosity of PKC, and the accessibility of which was increased thereafter. When HWP pretreated PKC was further hydrolyzed with enzyme cocktail (cellulase, xylanase, endo-mannanase), 45% of PKC was solubilized compared with the control. The manno-oligosaccharides produced by HWP and SP were converted to mannose and mannobiose by endo-mannanase. The results suggested that both HWP and SP promote enzymatic hydrolysis of PKC by releasing oligosaccharides and enhancing microporosity, and the synergism of which was effective for PKC decomposition.</p></div>","PeriodicalId":16416,"journal":{"name":"Journal of Molecular Catalysis B-enzymatic","volume":"134 ","pages":"Pages 37-42"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcatb.2016.09.004","citationCount":"6","resultStr":"{\"title\":\"The synergism of hot water pretreatment and enzymatic hydrolysis in depolymerization of lignocellulosic content of palm kernel cake\",\"authors\":\"Shuofu Mi , Hongqiang Li , Shuying Li , Yejun Han\",\"doi\":\"10.1016/j.molcatb.2016.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Palm kernel cake (PKC), mainly composed of mannan, lignin and protein, is abundant renewable resource with commercial value. To develop clean and efficient way for PKC refinery, the method based on the synergism of hot water pretreatment (HWP), steam pretreatment (SP) and enzymatic hydrolysis were developed. HWP of 180<!--> <!-->°C, 20<!--> <!-->min and SP of 121<!--> <!-->°C, 20<!--> <!-->min showed similar performance for sugar release from PKC. The main saccharides produced from PKC by HWP and SP were mannose and manno-oligosaccharides, while no furfural formed. The surface structure analyzed by SEM showed that HWP enhanced the microporosity of PKC, and the accessibility of which was increased thereafter. When HWP pretreated PKC was further hydrolyzed with enzyme cocktail (cellulase, xylanase, endo-mannanase), 45% of PKC was solubilized compared with the control. The manno-oligosaccharides produced by HWP and SP were converted to mannose and mannobiose by endo-mannanase. The results suggested that both HWP and SP promote enzymatic hydrolysis of PKC by releasing oligosaccharides and enhancing microporosity, and the synergism of which was effective for PKC decomposition.</p></div>\",\"PeriodicalId\":16416,\"journal\":{\"name\":\"Journal of Molecular Catalysis B-enzymatic\",\"volume\":\"134 \",\"pages\":\"Pages 37-42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.molcatb.2016.09.004\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Catalysis B-enzymatic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1381117716301679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis B-enzymatic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381117716301679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemical Engineering","Score":null,"Total":0}
The synergism of hot water pretreatment and enzymatic hydrolysis in depolymerization of lignocellulosic content of palm kernel cake
Palm kernel cake (PKC), mainly composed of mannan, lignin and protein, is abundant renewable resource with commercial value. To develop clean and efficient way for PKC refinery, the method based on the synergism of hot water pretreatment (HWP), steam pretreatment (SP) and enzymatic hydrolysis were developed. HWP of 180 °C, 20 min and SP of 121 °C, 20 min showed similar performance for sugar release from PKC. The main saccharides produced from PKC by HWP and SP were mannose and manno-oligosaccharides, while no furfural formed. The surface structure analyzed by SEM showed that HWP enhanced the microporosity of PKC, and the accessibility of which was increased thereafter. When HWP pretreated PKC was further hydrolyzed with enzyme cocktail (cellulase, xylanase, endo-mannanase), 45% of PKC was solubilized compared with the control. The manno-oligosaccharides produced by HWP and SP were converted to mannose and mannobiose by endo-mannanase. The results suggested that both HWP and SP promote enzymatic hydrolysis of PKC by releasing oligosaccharides and enhancing microporosity, and the synergism of which was effective for PKC decomposition.
期刊介绍:
Journal of Molecular Catalysis B: Enzymatic is an international forum for researchers and product developers in the applications of whole-cell and cell-free enzymes as catalysts in organic synthesis. Emphasis is on mechanistic and synthetic aspects of the biocatalytic transformation.
Papers should report novel and significant advances in one or more of the following topics;
Applied and fundamental studies of enzymes used for biocatalysis;
Industrial applications of enzymatic processes, e.g. in fine chemical synthesis;
Chemo-, regio- and enantioselective transformations;
Screening for biocatalysts;
Integration of biocatalytic and chemical steps in organic syntheses;
Novel biocatalysts, e.g. enzymes from extremophiles and catalytic antibodies;
Enzyme immobilization and stabilization, particularly in non-conventional media;
Bioprocess engineering aspects, e.g. membrane bioreactors;
Improvement of catalytic performance of enzymes, e.g. by protein engineering or chemical modification;
Structural studies, including computer simulation, relating to substrate specificity and reaction selectivity;
Biomimetic studies related to enzymatic transformations.