锥上多目标分式规划问题的高阶对称对偶性

Q3 Decision Sciences
Arshpreet Kaur, M. Sharma
{"title":"锥上多目标分式规划问题的高阶对称对偶性","authors":"Arshpreet Kaur, M. Sharma","doi":"10.2298/YJOR200615012K","DOIUrl":null,"url":null,"abstract":"This article studies a pair of higher order nondifferentiable symmetric fractional programming problem over cones. First, higher order cone convex function is introduced. Then using the properties of this function, duality results are set up, which give the legitimacy of the pair of primal dual symmetric model.","PeriodicalId":52438,"journal":{"name":"Yugoslav Journal of Operations Research","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Higher order symmetric duality for multiobjective fractional programming problems over cones\",\"authors\":\"Arshpreet Kaur, M. Sharma\",\"doi\":\"10.2298/YJOR200615012K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article studies a pair of higher order nondifferentiable symmetric fractional programming problem over cones. First, higher order cone convex function is introduced. Then using the properties of this function, duality results are set up, which give the legitimacy of the pair of primal dual symmetric model.\",\"PeriodicalId\":52438,\"journal\":{\"name\":\"Yugoslav Journal of Operations Research\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Yugoslav Journal of Operations Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/YJOR200615012K\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yugoslav Journal of Operations Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/YJOR200615012K","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 2

摘要

研究了锥上的一对高阶不可微对称分式规划问题。首先,介绍了高阶锥凸函数。然后利用该函数的性质,建立了对偶性结果,给出了对原对偶对称模型的合法性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher order symmetric duality for multiobjective fractional programming problems over cones
This article studies a pair of higher order nondifferentiable symmetric fractional programming problem over cones. First, higher order cone convex function is introduced. Then using the properties of this function, duality results are set up, which give the legitimacy of the pair of primal dual symmetric model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Yugoslav Journal of Operations Research
Yugoslav Journal of Operations Research Decision Sciences-Management Science and Operations Research
CiteScore
2.50
自引率
0.00%
发文量
14
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信