非线性广义纳什均衡问题的一阶算法

Michael I. Jordan, Tianyi Lin, M. Zampetakis
{"title":"非线性广义纳什均衡问题的一阶算法","authors":"Michael I. Jordan, Tianyi Lin, M. Zampetakis","doi":"10.48550/arXiv.2204.03132","DOIUrl":null,"url":null,"abstract":"We consider the problem of computing an equilibrium in a class of \\textit{nonlinear generalized Nash equilibrium problems (NGNEPs)} in which the strategy sets for each player are defined by equality and inequality constraints that may depend on the choices of rival players. While the asymptotic global convergence and local convergence rates of algorithms to solve this problem have been extensively investigated, the analysis of nonasymptotic iteration complexity is still in its infancy. This paper presents two first-order algorithms -- based on the quadratic penalty method (QPM) and augmented Lagrangian method (ALM), respectively -- with an accelerated mirror-prox algorithm as the solver in each inner loop. We establish a global convergence guarantee for solving monotone and strongly monotone NGNEPs and provide nonasymptotic complexity bounds expressed in terms of the number of gradient evaluations. Experimental results demonstrate the efficiency of our algorithms in practice.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"20 1","pages":"38:1-38:46"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"First-Order Algorithms for Nonlinear Generalized Nash Equilibrium Problems\",\"authors\":\"Michael I. Jordan, Tianyi Lin, M. Zampetakis\",\"doi\":\"10.48550/arXiv.2204.03132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of computing an equilibrium in a class of \\\\textit{nonlinear generalized Nash equilibrium problems (NGNEPs)} in which the strategy sets for each player are defined by equality and inequality constraints that may depend on the choices of rival players. While the asymptotic global convergence and local convergence rates of algorithms to solve this problem have been extensively investigated, the analysis of nonasymptotic iteration complexity is still in its infancy. This paper presents two first-order algorithms -- based on the quadratic penalty method (QPM) and augmented Lagrangian method (ALM), respectively -- with an accelerated mirror-prox algorithm as the solver in each inner loop. We establish a global convergence guarantee for solving monotone and strongly monotone NGNEPs and provide nonasymptotic complexity bounds expressed in terms of the number of gradient evaluations. Experimental results demonstrate the efficiency of our algorithms in practice.\",\"PeriodicalId\":14794,\"journal\":{\"name\":\"J. Mach. Learn. Res.\",\"volume\":\"20 1\",\"pages\":\"38:1-38:46\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Mach. Learn. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2204.03132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.03132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们考虑了一类\textit{非线性广义纳什均衡问题(NGNEPs)中的均衡计算问题},其中每个参与人的策略集由可能依赖于对手参与人选择的相等和不等式约束定义。虽然解决该问题的算法的渐近全局收敛性和局部收敛率已经得到了广泛的研究,但对非渐近迭代复杂性的分析仍处于起步阶段。本文分别提出了基于二次惩罚法(QPM)和增广拉格朗日法(ALM)的两种一阶算法,并在每个内环中使用加速镜像-prox算法作为求解器。建立了求解单调和强单调ngnep的全局收敛保证,并给出了用梯度求值次数表示的非渐近复杂度界。实验结果证明了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First-Order Algorithms for Nonlinear Generalized Nash Equilibrium Problems
We consider the problem of computing an equilibrium in a class of \textit{nonlinear generalized Nash equilibrium problems (NGNEPs)} in which the strategy sets for each player are defined by equality and inequality constraints that may depend on the choices of rival players. While the asymptotic global convergence and local convergence rates of algorithms to solve this problem have been extensively investigated, the analysis of nonasymptotic iteration complexity is still in its infancy. This paper presents two first-order algorithms -- based on the quadratic penalty method (QPM) and augmented Lagrangian method (ALM), respectively -- with an accelerated mirror-prox algorithm as the solver in each inner loop. We establish a global convergence guarantee for solving monotone and strongly monotone NGNEPs and provide nonasymptotic complexity bounds expressed in terms of the number of gradient evaluations. Experimental results demonstrate the efficiency of our algorithms in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信