多带有限自动机正则表达式的一些结果

T. Grigoryan
{"title":"多带有限自动机正则表达式的一些结果","authors":"T. Grigoryan","doi":"10.46991/pysu:a/2019.53.2.082","DOIUrl":null,"url":null,"abstract":"We consider sets of word tuples accepted by multitape finite automata. We use the known notation for regular expressions that describes languages accepted by one-tape automata. Nevertheless, the interpretation of the \"concatenation\" operation is different in this case. The algebra of events for multitape finite automata is defined in the same way as for one-tape automata. It is shown that the introduced algebra is a Kleene algebra. It is also, shown that some known results for the algebra of events accepted by one-tape finite automata are valid in this case too.","PeriodicalId":21146,"journal":{"name":"Proceedings of the YSU A: Physical and Mathematical Sciences","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SOME RESULTS ON REGULAR EXPRESSIONS FOR MULTITAPE FINITE AUTOMATA\",\"authors\":\"T. Grigoryan\",\"doi\":\"10.46991/pysu:a/2019.53.2.082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider sets of word tuples accepted by multitape finite automata. We use the known notation for regular expressions that describes languages accepted by one-tape automata. Nevertheless, the interpretation of the \\\"concatenation\\\" operation is different in this case. The algebra of events for multitape finite automata is defined in the same way as for one-tape automata. It is shown that the introduced algebra is a Kleene algebra. It is also, shown that some known results for the algebra of events accepted by one-tape finite automata are valid in this case too.\",\"PeriodicalId\":21146,\"journal\":{\"name\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46991/pysu:a/2019.53.2.082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the YSU A: Physical and Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46991/pysu:a/2019.53.2.082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑由多带有限自动机接受的词元组集合。我们使用正则表达式的已知符号来描述单磁带自动机所接受的语言。然而,在这种情况下,对“连接”操作的解释是不同的。多带有限自动机的事件代数定义与单带自动机相同。证明了所引入的代数是一个Kleene代数。本文还证明了单带有限自动机所接受的事件代数的一些已知结果在这种情况下也是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SOME RESULTS ON REGULAR EXPRESSIONS FOR MULTITAPE FINITE AUTOMATA
We consider sets of word tuples accepted by multitape finite automata. We use the known notation for regular expressions that describes languages accepted by one-tape automata. Nevertheless, the interpretation of the "concatenation" operation is different in this case. The algebra of events for multitape finite automata is defined in the same way as for one-tape automata. It is shown that the introduced algebra is a Kleene algebra. It is also, shown that some known results for the algebra of events accepted by one-tape finite automata are valid in this case too.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信