{"title":"使用神经网络的死亡率点和区间预测","authors":"Simon Schnürch, R. Korn","doi":"10.1017/asb.2021.34","DOIUrl":null,"url":null,"abstract":"Abstract The Lee–Carter model has become a benchmark in stochastic mortality modeling. However, its forecasting performance can be significantly improved upon by modern machine learning techniques. We propose a convolutional neural network (NN) architecture for mortality rate forecasting, empirically compare this model as well as other NN models to the Lee–Carter model and find that lower forecast errors are achievable for many countries in the Human Mortality Database. We provide details on the errors and forecasts of our model to make it more understandable and, thus, more trustworthy. As NN by default only yield point estimates, previous works applying them to mortality modeling have not investigated prediction uncertainty. We address this gap in the literature by implementing a bootstrapping-based technique and demonstrate that it yields highly reliable prediction intervals for our NN model.","PeriodicalId":8617,"journal":{"name":"ASTIN Bulletin","volume":"4 1","pages":"333 - 360"},"PeriodicalIF":1.7000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"POINT AND INTERVAL FORECASTS OF DEATH RATES USING NEURAL NETWORKS\",\"authors\":\"Simon Schnürch, R. Korn\",\"doi\":\"10.1017/asb.2021.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Lee–Carter model has become a benchmark in stochastic mortality modeling. However, its forecasting performance can be significantly improved upon by modern machine learning techniques. We propose a convolutional neural network (NN) architecture for mortality rate forecasting, empirically compare this model as well as other NN models to the Lee–Carter model and find that lower forecast errors are achievable for many countries in the Human Mortality Database. We provide details on the errors and forecasts of our model to make it more understandable and, thus, more trustworthy. As NN by default only yield point estimates, previous works applying them to mortality modeling have not investigated prediction uncertainty. We address this gap in the literature by implementing a bootstrapping-based technique and demonstrate that it yields highly reliable prediction intervals for our NN model.\",\"PeriodicalId\":8617,\"journal\":{\"name\":\"ASTIN Bulletin\",\"volume\":\"4 1\",\"pages\":\"333 - 360\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASTIN Bulletin\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1017/asb.2021.34\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASTIN Bulletin","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/asb.2021.34","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
POINT AND INTERVAL FORECASTS OF DEATH RATES USING NEURAL NETWORKS
Abstract The Lee–Carter model has become a benchmark in stochastic mortality modeling. However, its forecasting performance can be significantly improved upon by modern machine learning techniques. We propose a convolutional neural network (NN) architecture for mortality rate forecasting, empirically compare this model as well as other NN models to the Lee–Carter model and find that lower forecast errors are achievable for many countries in the Human Mortality Database. We provide details on the errors and forecasts of our model to make it more understandable and, thus, more trustworthy. As NN by default only yield point estimates, previous works applying them to mortality modeling have not investigated prediction uncertainty. We address this gap in the literature by implementing a bootstrapping-based technique and demonstrate that it yields highly reliable prediction intervals for our NN model.
期刊介绍:
ASTIN Bulletin publishes papers that are relevant to any branch of actuarial science and insurance mathematics. Its papers are quantitative and scientific in nature, and draw on theory and methods developed in any branch of the mathematical sciences including actuarial mathematics, statistics, probability, financial mathematics and econometrics.