{"title":"硅烷功能化氧化锌纳米颗粒的研究进展","authors":"Geetha Mable Pinto, Apoorva Devadiga","doi":"10.12723/mjs.61.4","DOIUrl":null,"url":null,"abstract":"The effect of zinc oxide nanoparticles surface modified with N-[3-(Trimethoxysilyl)propyl]ethylenediamine (15.5 nm) on mild steel in 0.5M HCl at five different concentrations and temperatures has been studied using Electrochemical Impedance Spectroscopy (EIS) and Tafel polarization curves. Results show that the inhibition efficiency of synthesized mixed type of inhibitor increases up to 40˚C and then decreases because of both physical and chemical adsorption. The activation parameters calculated using Arrhenius plot confirmed chemical adsorption process. Adsorption process follows Langmuir adsorption isotherm and free energy of adsorption values proved the spontaneous adsorption of inhibitor on mild steel sample. Scanning electron microscopy (SEM) analysis also showed that the synthesized nanoparticle is efficient as corrosion inhibitor. Green synthetic method was adopted in synthesis of inhibitor by using Phyllanthus Emblica (Gooseberry) extract. The inhibitor was characterized by Fourier Transform Infra-red Spectroscopy (FT-IR) and X-Ray Diffraction techniques.","PeriodicalId":18050,"journal":{"name":"Mapana Journal of Sciences","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of Silane Functionalized ZnO Nanoparticles for Enhancing Anticorrosion Application\",\"authors\":\"Geetha Mable Pinto, Apoorva Devadiga\",\"doi\":\"10.12723/mjs.61.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of zinc oxide nanoparticles surface modified with N-[3-(Trimethoxysilyl)propyl]ethylenediamine (15.5 nm) on mild steel in 0.5M HCl at five different concentrations and temperatures has been studied using Electrochemical Impedance Spectroscopy (EIS) and Tafel polarization curves. Results show that the inhibition efficiency of synthesized mixed type of inhibitor increases up to 40˚C and then decreases because of both physical and chemical adsorption. The activation parameters calculated using Arrhenius plot confirmed chemical adsorption process. Adsorption process follows Langmuir adsorption isotherm and free energy of adsorption values proved the spontaneous adsorption of inhibitor on mild steel sample. Scanning electron microscopy (SEM) analysis also showed that the synthesized nanoparticle is efficient as corrosion inhibitor. Green synthetic method was adopted in synthesis of inhibitor by using Phyllanthus Emblica (Gooseberry) extract. The inhibitor was characterized by Fourier Transform Infra-red Spectroscopy (FT-IR) and X-Ray Diffraction techniques.\",\"PeriodicalId\":18050,\"journal\":{\"name\":\"Mapana Journal of Sciences\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mapana Journal of Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12723/mjs.61.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mapana Journal of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12723/mjs.61.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of Silane Functionalized ZnO Nanoparticles for Enhancing Anticorrosion Application
The effect of zinc oxide nanoparticles surface modified with N-[3-(Trimethoxysilyl)propyl]ethylenediamine (15.5 nm) on mild steel in 0.5M HCl at five different concentrations and temperatures has been studied using Electrochemical Impedance Spectroscopy (EIS) and Tafel polarization curves. Results show that the inhibition efficiency of synthesized mixed type of inhibitor increases up to 40˚C and then decreases because of both physical and chemical adsorption. The activation parameters calculated using Arrhenius plot confirmed chemical adsorption process. Adsorption process follows Langmuir adsorption isotherm and free energy of adsorption values proved the spontaneous adsorption of inhibitor on mild steel sample. Scanning electron microscopy (SEM) analysis also showed that the synthesized nanoparticle is efficient as corrosion inhibitor. Green synthetic method was adopted in synthesis of inhibitor by using Phyllanthus Emblica (Gooseberry) extract. The inhibitor was characterized by Fourier Transform Infra-red Spectroscopy (FT-IR) and X-Ray Diffraction techniques.