driingstereo:用于自动驾驶场景立体匹配的大规模数据集

Guorun Yang, Xiao Song, Chaoqin Huang, Zhidong Deng, Jianping Shi, Bolei Zhou
{"title":"driingstereo:用于自动驾驶场景立体匹配的大规模数据集","authors":"Guorun Yang, Xiao Song, Chaoqin Huang, Zhidong Deng, Jianping Shi, Bolei Zhou","doi":"10.1109/CVPR.2019.00099","DOIUrl":null,"url":null,"abstract":"Great progress has been made on estimating disparity maps from stereo images. However, with the limited stereo data available in the existing datasets and unstable ranging precision of current stereo methods, industry-level stereo matching in autonomous driving remains challenging. In this paper, we construct a novel large-scale stereo dataset named DrivingStereo. It contains over 180k images covering a diverse set of driving scenarios, which is hundreds of times larger than the KITTI Stereo dataset. High-quality labels of disparity are produced by a model-guided filtering strategy from multi-frame LiDAR points. For better evaluations, we present two new metrics for stereo matching in the driving scenes, i.e. a distance-aware metric and a semantic-aware metric. Extensive experiments show that compared with the models trained on FlyingThings3D or Cityscapes, the models trained on our DrivingStereo achieve higher generalization accuracy in real-world driving scenes, while the proposed metrics better evaluate the stereo methods on all-range distances and across different classes. Our dataset and code are available at https://drivingstereo-dataset.github.io.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"34 1","pages":"899-908"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"112","resultStr":"{\"title\":\"DrivingStereo: A Large-Scale Dataset for Stereo Matching in Autonomous Driving Scenarios\",\"authors\":\"Guorun Yang, Xiao Song, Chaoqin Huang, Zhidong Deng, Jianping Shi, Bolei Zhou\",\"doi\":\"10.1109/CVPR.2019.00099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Great progress has been made on estimating disparity maps from stereo images. However, with the limited stereo data available in the existing datasets and unstable ranging precision of current stereo methods, industry-level stereo matching in autonomous driving remains challenging. In this paper, we construct a novel large-scale stereo dataset named DrivingStereo. It contains over 180k images covering a diverse set of driving scenarios, which is hundreds of times larger than the KITTI Stereo dataset. High-quality labels of disparity are produced by a model-guided filtering strategy from multi-frame LiDAR points. For better evaluations, we present two new metrics for stereo matching in the driving scenes, i.e. a distance-aware metric and a semantic-aware metric. Extensive experiments show that compared with the models trained on FlyingThings3D or Cityscapes, the models trained on our DrivingStereo achieve higher generalization accuracy in real-world driving scenes, while the proposed metrics better evaluate the stereo methods on all-range distances and across different classes. Our dataset and code are available at https://drivingstereo-dataset.github.io.\",\"PeriodicalId\":6711,\"journal\":{\"name\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"34 1\",\"pages\":\"899-908\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"112\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2019.00099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 112

摘要

在从立体图像估计视差图方面取得了很大进展。然而,由于现有数据集中可获得的立体数据有限,且现有立体方法的测距精度不稳定,自动驾驶中工业级立体匹配仍然具有挑战性。在本文中,我们构建了一个新的大规模立体数据集DrivingStereo。它包含超过18万张涵盖各种驾驶场景的图像,比KITTI Stereo数据集大数百倍。采用模型导向滤波策略,从多帧激光雷达点生成高质量的视差标签。为了更好地评估,我们提出了两个新的驾驶场景立体匹配度量,即距离感知度量和语义感知度量。大量的实验表明,与在FlyingThings3D或cityscape上训练的模型相比,在我们的DrivingStereo上训练的模型在真实驾驶场景中获得了更高的泛化精度,而我们提出的指标在全距离和不同类别上更好地评估了立体方法。我们的数据集和代码可在https://drivingstereo-dataset.github.io上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DrivingStereo: A Large-Scale Dataset for Stereo Matching in Autonomous Driving Scenarios
Great progress has been made on estimating disparity maps from stereo images. However, with the limited stereo data available in the existing datasets and unstable ranging precision of current stereo methods, industry-level stereo matching in autonomous driving remains challenging. In this paper, we construct a novel large-scale stereo dataset named DrivingStereo. It contains over 180k images covering a diverse set of driving scenarios, which is hundreds of times larger than the KITTI Stereo dataset. High-quality labels of disparity are produced by a model-guided filtering strategy from multi-frame LiDAR points. For better evaluations, we present two new metrics for stereo matching in the driving scenes, i.e. a distance-aware metric and a semantic-aware metric. Extensive experiments show that compared with the models trained on FlyingThings3D or Cityscapes, the models trained on our DrivingStereo achieve higher generalization accuracy in real-world driving scenes, while the proposed metrics better evaluate the stereo methods on all-range distances and across different classes. Our dataset and code are available at https://drivingstereo-dataset.github.io.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信